Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T16:42:20.452Z Has data issue: false hasContentIssue false

Bifurcation Diversity in an Annular Pool Heated from Below: Prandtl and Biot Numbers Effects

Published online by Cambridge University Press:  03 June 2015

A. J. Torregrosa*
Affiliation:
CMT-Motores Térmicos, Universitat Politécnica de València, València 46022, Spain
S. Hoyas*
Affiliation:
CMT-Motores Térmicos, Universitat Politécnica de València, València 46022, Spain
M. J. Pérez-Quiles*
Affiliation:
Instituto Universitario de Matemática Pura y Aplicada, Universitat Politécnica de Valencia, Valencia 46022, Spain
J. M. Mompó-Laborda*
Affiliation:
CMT-Motores Térmicos, Universitat Politécnica de València, València 46022, Spain
Get access

Abstract

In this article the instabilities appearing in a liquid layer are studied numerically by means of the linear stability method. The fluid is confined in an annular pool and is heated from below with a linear decreasing temperature profile from the inner to the outer wall. The top surface is open to the atmosphere and both lateral walls are adiabatic. Using the Rayleigh number as the only control parameter, many kind of bifurcations appear at moderately low Prandtl numbers and depending on the Biot number. Several regions on the Prandtl-Biot plane are identified, their boundaries being formed from competing solutions at codimension-two bifurcation points.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Bénard, H., Les tourbillons cellulaires dans une nappe liquide, Rev. Gén. Sci. Pures Appl., 11 (1900), 12611271.Google Scholar
[2]Bernardi, C. and Maday, J., Approximations Spectrales de Problemes aux Limites Elliptiques, Springer-Verlag, Paris, 1992.Google Scholar
[3]Burguete, J., Mokolobwiez, N., Daviaud, F., Garnier, N. and Chiffaudel, A., Local Marangoni number at the onset of hydrothermal waves, Phys. Fluids, 13 (2001), 27732787.CrossRefGoogle Scholar
[4]Canuto, C., Hussaini, M. Y., Quarteroni, A. and Zang, T. A., Spectral Methods in Fluid Dynamics, Springer-Verlag, Berlin, 1988.Google Scholar
[5]Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability, Dover Publications, New York, 1981.Google Scholar
[6]Daviaud, F. and Vince, J. M., Traveling waves in a fluid layer subjected to a horizontal temperature gradient, Phys. Rev. E, 48 (1993), 44324436.Google Scholar
[7]Ezersky, A. B., Garcimartín, A., Burguete, J., Mancini, H. L. and Pérez-García, C., Hydrothermal waves in Marangoni convection in a cylindrical container, Phys. Rev. E, 47 (1993), 11261131.Google Scholar
[8]Garnier, N. and Chiffaudel, A., Two dimensional hydrothermal waves in an extended cylindrical vessel, Europhys. J. B, 19 (2001), 87.Google Scholar
[10]Herrero, H. and Mancho, A. M., Influence of aspect ratio in convection due to nonuniform heating, Phys. Rev. E, 57 (1998), 73367339.CrossRefGoogle Scholar
[11]Herrero, H., Hoyas, S.Donoso, A., Mancho, A. M., Chacon, J. M., Portugues, R. F. and Yeste, B., Chebyshev collocation for a convective problem in primitive variable formulation, J. Sci. Comput., 18(2) (2003), 315328.Google Scholar
[12]Hoyas, S., Herrero, H. and Mancho, A. M., Thermal convection in a cylindrical annulus heated laterally, J. Phys. A Math and Gen., 35 (2002), 40674083.Google Scholar
[13]Hoyas, S., Herrero, H. and Mancho, A. M., Instabilities in a laterally heated liquid layer, Phys. Rev. E, 66 (2002), 057301.Google Scholar
[14]Hoyas, S., Herrero, H., Mancho, A. M., Garnier, N. and Chiffaudel, A., Phys. Fluids 1(7) (2005), 054104.Google Scholar
[15]Mancho, A. M., Herrero, H. and Burguete, J., Primary instabilities in convective cells due to nonuniform heating, Phys. Rev. E, 56 (1997), 29162923.Google Scholar
[16]Mancho, A. M. and Herrero, H., Instabilities in a laterally heated liquid layer, Phys. Fluids, 12 (2000), 10441052.Google Scholar
[17]Mercier, J. F. and Normand, C., Buoyant-thermocapillary instabilities of differentially heated liquid layers, Phys. Fluids, 8 (1996), 14331445.Google Scholar
[18]Navarro, M. C., Herrero, H, Mancho, A. M. and Wathen, A., Efficient solution of a generalized eigenvalue problem arising in a thermoconvective instability, Commun. Comput. Phys., 3(2) (2008), 308329.Google Scholar
[19]Navarro, M. C., Herrero, H. and Hoyas, S., Chebyshev collocation for optimal control in a thermoconvective flow, Commun. Comput. Phys., 5(2-4) (2009), 649666.Google Scholar
[20]Pardo, R., Herrero, H. and Hoyas, S., Theoretical study of a Benard-Marangoni problem, J. Math. Anal. Appl., 376(1) (2011), 231246.Google Scholar
[21]Pelacho, M. A. and Burguete, J., Temperature oscillations of hydrothermal waves in thermocapillary-buoyancy convection, Phys. Rev. E, 59 (1999), 835840.Google Scholar
[22]Riley, R. J. and Neitzel, G. P., Instability of thermocapillary-buoyancy convection in shallow layers, part 1, characterization of steady and oscillatory instabilities, J. Fluid Mech., 359 (1998), 143164.Google Scholar
[23]Peng, L., Li, Y. R., Shi, W. Y. and Imaishi, N., Three-dimensional thermocapillary-buoyancy flow of silicone oil in a differentially heated annular pool, Int J. Heat Mass Tran., 50(5-6) (2007), 872880.Google Scholar
[24]Schwabe, D., Zebib, A. and Sim, B. C., Oscillatory thermocapillary convection in open cylindrical annuli, part 1, experiments under microgravity, J. Fluid Mech., 491 (2003), 239258.Google Scholar
[25]Shi, W. Y., Ermakov, M. K., Li, Y. R., Peng, L. and Imaishi, N., Influence of Buoyancy force on thermocapillary convection instability in the differentially heated annular pools of silicon melt, Microgravity Sci. Tech., 21 (2009), S289S297.Google Scholar
[26]Sh, W. Y. and Peng, L., J. Eng. Thermophys-Rus, 21(2) (2011), 250254.Google Scholar
[27]Shi, W. Y., Liu, X., Li, G. Y., Li, Y. R., Peng, L., Ermakov, M. K. and Imaishi, N., Thermocapillary convection instability in shallow annular pools by linear stability analysis, J. Supercond Nov. Magn., 23(6) (2010), 11851188.Google Scholar
[28]Smith, M. K. and Davis, S. H., Instability of dynamic thermocapillary liquid bridge I: convective instability, J. Fluid Mech., 132 (1983), 119144.CrossRefGoogle Scholar