Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T22:08:55.387Z Has data issue: false hasContentIssue false

Chebyshev-Legendre Spectral Domain Decomposition Method for Two-Dimensional Vorticity Equations

Published online by Cambridge University Press:  17 May 2016

Hua Wu*
Affiliation:
Department of Mathematics, Shanghai University, Shanghai 200444, P.R. China
Jiajia Pan
Affiliation:
Department of Mathematics, Shanghai University, Shanghai 200444, P.R. China
Haichuan Zheng
Affiliation:
Department of Mathematics, Shanghai University, Shanghai 200444, P.R. China
*
*Corresponding author. Email address:hwu@staff.shu.edu.cn(H. Wu)
Get access

Abstract

We extend the Chebyshev-Legendre spectral method to multi-domain case for solving the two-dimensional vorticity equations. The schemes are formulated in Legendre-Galerkin method while the nonlinear term is collocated at Chebyshev-Gauss collocation points. We introduce proper basis functions in order that the matrix of algebraic system is sparse. The algorithm can be implemented efficiently and in parallel way. The numerical analysis results in the case of one-dimensional multi-domain are generalized to two-dimensional case. The stability and convergence of the method are proved. Numerical results are given.

Type
Research Article
Copyright
Copyright © Global-Science Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Reyna, L. G., L2-estimates for Chebyshev collocation,J. Comput. Phys., 3 (1988), 124.Google Scholar
[2]Orszag, S. A., Spectral methods for complex geometries, J. Comput. Phys., 37 (1980), 7092.Google Scholar
[3]Mccrory, R. L. and Orszag, S. A., Spectral methods for muliti-dimensional diffusion problems, J. Comput. Phys., 37 (1980), 93112.Google Scholar
[4]Canuto, C. and Funaro, D., The Schwarz algorithm for spectral methods, IMA J. Numer. Anal., 474 (1985), 131.Google Scholar
[5]Zanolli, P., Domain decomposition algorithms for spectral methods, IMA J. Numer. Anal., 491 (1985), 149.Google Scholar
[6]Quarteroni, A., Domain decomposition techniques using spectral methods, IMA J. Numer. Anal., 540 (1986), 150.Google Scholar
[7]Yang, H.H. and Shizgal, B., Chebyshev pseudospectral multidomain technique for viscous-flow calculation, Comp. Meth. in App. Mech. and Engin., 118 (1994), 4761.Google Scholar
[8]Fdez, G.M. and Munoz, R. S., Error estimates for the patching method in bidimensional case, Numer. Math., 82 (1999), 621634.Google Scholar
[9]Maday, R., A Chebyshev pseudospectral multidomain method for a boundary-layer problem, J. Comput. Phys., 124(1996), 254270.Google Scholar
[10]Wu, H., Ma, H. P. and Li, H. Y., Chebyshev-Legendre Spectral Method for Solving the Two-dimensional Vorticity Equations with Homogeneous Dirichlet Conditions,J. Numer. Meth. For P.D.E., 25 (2009), 740755.Google Scholar
[11]Lions, J. L., Quèlques Methodes de Resolutions des Problems aux Limites Non Lineaires, Dunod, Paris, 1968.Google Scholar
[12]Teman, R., Navier-Stokes equations, North-Holland, Amsterdam, 1977.Google Scholar
[13]Guo, B. Y., The convergence of spectral scheme for solving two-dimensional vorticity equation, J. Comput. Math., 1 (1983), 353362.Google Scholar
[14]Guo, B. Y. and Ma, H. P., The Fourier pseudospectral method for three-dimensional vorticity equations, Acta Math. Appl. Sin., 3 (1987), 296309.Google Scholar
[15]Guo, B. Y. and Cao, W. M., Spectral-finite element method for two-dimensional vorticity equations, Numer. Math., 1988.Google Scholar
[16]Ma, H. P. and Guo, B. Y., The Fourier pseudospectral method for two-dimensional vorticity equations, IMAJ. Numer. Anal., 7 (1987), 4760.Google Scholar
[17]Guo, B. Y. and Ma, H. P., Spectral methods for two-dimensional incompressible flow,J. Math. Res. Expo., 19 (1999), 375390.Google Scholar
[18]Guo, B. Y. and Li, J., Fourier-Chebyshev pseudospectral method for two-dimensional vorticity equations, Numer. Math., 66(1993), 329346.Google Scholar
[19]Guo, B. Y., Ma, H. P., Cao, W. M. and Huang, H., The Fourier-Chebyshev spectral method for solving two-dimensional unsteady vorticity equations,J. Comput. Phys., 101 (1992), 207217.Google Scholar
[20]Kwan, Y.-Y. and Shen, J., An efficient direct parallel spectral-element solver for separable elliptic problems, J. Comput. Phys., 225 (2007), 17211735.Google Scholar
[21]Chen, L. Z., Shen, J., Xu, C. J. and Luo, L.-S., Parallel spectral-element direction splitting method for incompressible Naiver-Stokes equations, Appl. Numer. Math. 84 (2014),: 6679.Google Scholar
[22]Shen, J., Efficient spectral-Galerkin method I: direct solvers for second-and four-order equations using Legendre polynomials, SIAM J. Sci. Comput., 15 (1994), 14891505.Google Scholar
[23]Shen, J., Efficient Chebyshev-Legendre Galerkin methods for elliptic problems, Proceedings of ICOSAHOM'95, Houston J. Math., (1996), 233239.Google Scholar
[24]Ma, H. P., Chebyshev-Legendre spectral viscosity method for nonlinear conservation laws, SIAM J. Numer. Anal., 35 (1998), 869892.Google Scholar
[25]Ma, H. P., Chebyshev-Legendre super spectral viscosity method for nonlinear conservation laws, SIAM J. Numer. Anal., 35(1998), 893908.Google Scholar
[26]Li, H. Y., Wu, H. and Ma, H. P., Legendre Galerkin-Chebyshev collocation method for Burgers-like equation, IMAJ. Numer. Anal., 23 (2003), 109124.Google Scholar
[27]Wu, H., Ma, H. P. and Li, H. Y., Optimal error estimates of the Chebyshev-Legendre spectral method for solving the generalized Burgers equation, SIAMJ. Numer. Anal., 41 (2003), 659672.Google Scholar
[28]Ji, Y. Y., Wu, H., Ma, H. P. and Guo, B. Y., Mutidomain pseudospectral methods for nonlinear convection-diffusion equations, Appl. Math. Mech.-Eng. Ed., 32 (2011), 12551268.Google Scholar
[29]Szabo, B. and Babuska, I., Finite Element Analysis, New York: A Wiley-Interscience Publication, John Wiley and Sons Inc., 1991.Google Scholar
[30]Karniadakis, G. E. and Sherwin, S.J., Spectral hp Element Methods for CFD, Numerical Mathematics and Scientific Computation, New York: Oxford University Press, 1999.Google Scholar
[31]Shen, J. and Tang, T., Spectral and High-Order Methods with Application, Science Press, Beijing, 2006.Google Scholar
[32]Canuto, C., Hussaini, M. Y. and Zang, T. A., Spectral Methods in Fluid Dynamics, Springer-Verlag, Berlin, 1988.Google Scholar
[33]Guo, B. Y., The differential methods of partial differential equations, Science Press Beijing, 1988.Google Scholar
[34]Guo, B. Y., Generalized stability of discretization and its applications to numerical solutions of nonlinear differential equations, Computational Mathematics And Mathematical Physics 32(1992), 447457.Google Scholar
[35]Guo, B. Y., Generalized stability of discretization and its applications to numerical solutions of nonlinear differential equations, Contemporary Mathematics, 163 (1994), 3354.CrossRefGoogle Scholar
[36]Guo, B. Y., Spectral Methods and Their Applications, World Scientific, Singapore, 1998.Google Scholar