Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Neale, Christopher M. U.
Maltese, Antonino
Altaf, Muhammad U.
Jana, Raghavendra B.
Hoteit, Ibrahim
and
McCabe, Matthew F.
2016.
Continuous data assimilation for downscaling large-footprint soil moisture retrievals.
Vol. 9998,
Issue. ,
p.
99981O.
Foias, Ciprian
Mondaini, Cecilia F.
and
Titi, Edriss S.
2016.
A Discrete Data Assimilation Scheme for the Solutions of the Two-Dimensional Navier--Stokes Equations and Their Statistics.
SIAM Journal on Applied Dynamical Systems,
Vol. 15,
Issue. 4,
p.
2109.
Foias, Ciprian
Jolly, Michael S.
Lithio, Dan
and
Titi, Edriss S.
2017.
One-Dimensional Parametric Determining form for the Two-Dimensional Navier–Stokes Equations.
Journal of Nonlinear Science,
Vol. 27,
Issue. 5,
p.
1513.
Farhat, Aseel
Lunasin, Evelyn
and
Titi, Edriss S.
2017.
Continuous Data Assimilation for a 2D Bénard Convection System Through Horizontal Velocity Measurements Alone.
Journal of Nonlinear Science,
Vol. 27,
Issue. 3,
p.
1065.
Altaf, M. U.
Titi, E. S.
Gebrael, T.
Knio, O. M.
Zhao, L.
McCabe, M. F.
and
Hoteit, I.
2017.
Downscaling the 2D Bénard convection equations using continuous data assimilation.
Computational Geosciences,
Vol. 21,
Issue. 3,
p.
393.
Jolly, Michael S.
Martinez, Vincent R.
and
Titi, Edriss S.
2017.
A Data Assimilation Algorithm for the Subcritical Surface Quasi-Geostrophic Equation.
Advanced Nonlinear Studies,
Vol. 17,
Issue. 1,
p.
167.
Biswas, Animikh
and
Martinez, Vincent R.
2017.
Higher-order synchronization for a data assimilation algorithm for the 2D Navier–Stokes equations.
Nonlinear Analysis: Real World Applications,
Vol. 35,
Issue. ,
p.
132.
Farhat, Aseel
Johnston, Hans
Jolly, Michael
and
Titi, Edriss S.
2018.
Assimilation of Nearly Turbulent Rayleigh–Bénard Flow Through Vorticity or Local Circulation Measurements: A Computational Study.
Journal of Scientific Computing,
Vol. 77,
Issue. 3,
p.
1519.
Mondaini, Cecilia F.
and
Titi, Edriss S.
2018.
Uniform-in-Time Error Estimates for the Postprocessing Galerkin Method Applied to a Data Assimilation Algorithm.
SIAM Journal on Numerical Analysis,
Vol. 56,
Issue. 1,
p.
78.
Clark Di Leoni, Patricio
Mazzino, Andrea
and
Biferale, Luca
2018.
Inferring flow parameters and turbulent configuration with physics-informed data assimilation and spectral nudging.
Physical Review Fluids,
Vol. 3,
Issue. 10,
Boďová, Katarína
Haskovec, Jan
and
Markowich, Peter
2018.
Well posedness and maximum entropy approximation for the dynamics of quantitative traits.
Physica D: Nonlinear Phenomena,
Vol. 376-377,
Issue. ,
p.
108.
Blocher, Jordan
Martinez, Vincent R.
and
Olson, Eric
2018.
Data assimilation using noisy time-averaged measurements.
Physica D: Nonlinear Phenomena,
Vol. 376-377,
Issue. ,
p.
49.
Frank, Jason
and
Zhuk, Sergiy
2018.
A detectability criterion and data assimilation for nonlinear differential equations.
Nonlinearity,
Vol. 31,
Issue. 11,
p.
5235.
Larios, Adam
Rebholz, Leo G.
and
Zerfas, Camille
2019.
Global in time stability and accuracy of IMEX-FEM data assimilation schemes for Navier–Stokes equations.
Computer Methods in Applied Mechanics and Engineering,
Vol. 345,
Issue. ,
p.
1077.
Mondaini, Cecilia F.
Titi, Edriss S.
Biswas, Animikh
and
Foias, Ciprian
2019.
Downscaling data assimilation algorithm with applications to statistical solutions of the Navier–Stokes equations.
Annales de l'Institut Henri Poincaré C, Analyse non linéaire,
Vol. 36,
Issue. 2,
p.
295.
Desamsetti, Srinivas
Dasari, Hari Prasad
Langodan, Sabique
Titi, Edriss S.
Knio, Omar
and
Hoteit, Ibrahim
2019.
Efficient dynamical downscaling of general circulation models using continuous data assimilation.
Quarterly Journal of the Royal Meteorological Society,
Vol. 145,
Issue. 724,
p.
3175.
Celik, Emine
Olson, Eric
and
Titi, Edriss S.
2019.
Spectral Filtering of Interpolant Observables for a Discrete-in-Time Downscaling Data Assimilation Algorithm.
SIAM Journal on Applied Dynamical Systems,
Vol. 18,
Issue. 2,
p.
1118.
García-Archilla, Bosco
and
Novo, Julia
2020.
Error analysis of fully discrete mixed finite element data assimilation schemes for the Navier-Stokes equations.
Advances in Computational Mathematics,
Vol. 46,
Issue. 4,
Clark Di Leoni, Patricio
Mazzino, Andrea
and
Biferale, Luca
2020.
Synchronization to Big Data: Nudging the Navier-Stokes Equations for Data Assimilation of Turbulent Flows.
Physical Review X,
Vol. 10,
Issue. 1,
Ibdah, Hussain A
Mondaini, Cecilia F
and
Titi, Edriss S
2020.
Fully discrete numerical schemes of a data assimilation algorithm: uniform-in-time error estimates.
IMA Journal of Numerical Analysis,
Vol. 40,
Issue. 4,
p.
2584.