Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T07:12:36.887Z Has data issue: false hasContentIssue false

Critical Behaviour of the Ising S=l/2 and S=l Model on (3,4,6,4) and (3,3,3,3,6) Archimedean Lattices

Published online by Cambridge University Press:  20 August 2015

F. W. S. Lima*
Affiliation:
Dietrich Stauffer Computational Physics Lab, Departamento de Física, Universidade Federal do Piauí, 64049-550 Teresina, Piauí, Brazil
J. Mostowicz*
Affiliation:
Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, PL-30059 Kraków, Poland
K. Malarz*
Affiliation:
Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, PL-30059 Kraków, Poland
*
Corresponding author.Email:fwslima@gmail.com
Get access

Abstract

We investigate the critical properties of the Ising S = 1/2 and S = 1 model on (3,4,6,4) and (34,6) Archimedean lattices. The system is studied through the extensive Monte Carlo simulations. We calculate the critical temperature as well as the critical point exponents γ/ν, β/ν, and ν basing on finite size scaling analysis. The calculated values of the critical temperature for S = 1 are kBTC/J=1.590(3), and kBTC/J=2.100(4) for (3,4,6,4) and (34,6) Archimedean lattices, respectively. The critical exponents β/ν, γ/ν, and 1/ν, for S=1 are β/ν=0.180(20), γ/ν=1.46(8), and 1/ν=0.83(5), for (3,4,6,4) and 0.103(8), 1.44(8), and 0.94(5), for (34,6) Archimedean lattices. Obtained results differ from the Ising S = 1/2 model on (3,4,6,4), (34,6) and square lattice. The evaluated effective dimensionality of the system for S = 1 are Deff=1.82(4), for (3,4,6,4), and Deff = 1.64(5) for (34,6).

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Lenz, W., Z. Phys., 21 (1921), 613; Ising, E., Z. Phys., 31 (1925), 235.Google Scholar
[2]Baxter, R. J., Exactly solved models in statistical mechanics, London (1982), Academic Press.Google Scholar
[3]Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller, E., J. Chem. Phys., 21 (1953), 1087.Google Scholar
[4]Swendsen, R. H. and Wang, J. S., Phys. Rev. Lett., 58 (1987), 86.Google Scholar
[5]Wang, F. and Landau, D. P., Phys. Rev. Lett, 86 (2001), 2050.Google Scholar
[6]Ferrenberg, A. M. and Swendsen, R. H., Phys. Rev. Lett., 61 (1988), 2635.Google Scholar
[7]Oliveira, P. M. C. de, Penna, T. J. P. and Herrmann, H. J., Braz. J. Phys., 26 (1996), 677.Google Scholar
[8]Callen, E. and Shapero, D., Physics Today, 27 (1974), 23.Google Scholar
[9]Galam, S., Gefen, Y. and Shapir, Y., J. Mathematical Sociology, 9 (1982), 1.Google Scholar
[10]Latané, B., Am. Psychologist, 36 (1981), 343.Google Scholar
[11]Liggett, T. M., Interacting Particles Systems, Springer, New York (1985).Google Scholar
[12]Schelling, T. C., J. Mathematical Sociology, 1 (1971), 141.Google Scholar
[13]Stauffer, D., Oliveira, S. Moss. de, Oliveira, P. M. C. de and Martins, J. S. Sä, Biology, Sociology, Geology by Computational Physicists, Elsevier Amsterdam, (2006).Google Scholar
[14]Zaklan, G., Westerhoff, F. and Stauffer, D., J. Econ. Interact. Coord., 4 (2008), 1.Google Scholar
[15]Zaklan, G., Lima, F. W. S. and Westerhoff, F., Physica A, 387 (2008), 5857.Google Scholar
[16]Potts, R. B., Proc. Cambridge Phil. Soc., 48 (1952), 106.Google Scholar
[17]Wu, F.-Y., Rev. Mod. Phys., 54 (1982), 235.Google Scholar
[18]Blume, M., Phys. Rev., 141 (1966), 517.CrossRefGoogle Scholar
[19]Capel, H. W., Physica (Amsterdam), 32 (1966), 966.Google Scholar
[20]Saul, D. M., Wortis, M., Stauffer, D., Phys. Rev. B, 9 (1974), 4974.Google Scholar
[21]Jain, A. K., Landau, D. P., Phys. Rev. B, 22 (1980), 445.Google Scholar
[22]Bonfim, O. F. de Alcantara, Physica A, 130 (1985), 365.Google Scholar
[23]Berker, A. N., Wortis, M., Phys. Rev. B, 14 (1976), 4946.Google Scholar
[24]Oliveira, S. Moss de, Oliveira, P. M. C. de, Barreto, F. C. Sä, J. Stat. Phys., 78 (1995), 1619.Google Scholar
[25]Plascak, J. A., Moreira, J. G., Barreto, F. C. Sä, Phys. Lett. A, 173 (1993), 360.Google Scholar
[26]Tamashiro, M. N., Salinas, S. R., Physica A, 211 (1994), 124.Google Scholar
[27]Xavier, J. C., Alcaraz, F. C., Lara, D. Pen˜a, Plascak, J. A., Phys. Rev. B, 57 (1998), 11575.Google Scholar
[28]Lara, D. Peña, Plascak, J. A., Int. J. Mod. Phys. B, 12 (1998), 2045.Google Scholar
[29]Barreto, F. C. Sä, Bonfim, O. F. Alcantara, Physica A, 172 (1991), 378.Google Scholar
[30]Bakchinch, A., Bassir, A., Benyoussef, A., Physica A, 195 (1993), 188.Google Scholar
[31]Plascak, J. A., Landau, D. P., Phys. Rev. E, 67 (2003), R015103.Google Scholar
[32]Lima, F. W. S., Int. J. Mod. Phys. C, 17 (2006), 1267.Google Scholar
[33]Kepler, J., Harmonices Mundi (Lincii) (1619).Google Scholar
[34]Suding, P. N., Ziff, R. M., Phys. Rev. E, 60 (1999), 275Google Scholar
[35]Malarz, K., Zborek, M., Wröbel, B., TASK Quartely, 9 (2005), 475.Google Scholar
[36]Lima, F. W. S., Malarz, K., Int. J. Mod. Phys. C, 17 (2006), 1273.Google Scholar
[37]Landau, D. P., Binder, K., A Guide to Monte Carlo Simulations in Statistical Physics, 2nd edition, Cambridge UP, 2005.Google Scholar
[38]Binder, K., Z. Phys. B, 43 (1981), 119.Google Scholar
[39]Blöte, H. W. J. and Nightingale, M. P., Physica A, 134 (1985), 274.Google Scholar
[40]Mostowicz, J., M.Sc. Thesis, AGH-UST, Kraków (2009).Google Scholar
[41]Codello, A., J. Phys. A: Math. Theor., 43 (2010), 385002; ibid 399801.Google Scholar