Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T13:25:22.211Z Has data issue: false hasContentIssue false

Fekete-Gauss Spectral Elements for Incompressible Navier-Stokes Flows: The Two-Dimensional Case

Published online by Cambridge University Press:  03 June 2015

Laura Lazar*
Affiliation:
Lab. J.A. Dieudonne, UMR 7351 CNRS UNS, University de Nice - Sophia Antipolis, 06108 Nice Cedex 02, France
Richard Pasquetti*
Affiliation:
Lab. J.A. Dieudonne, UMR 7351 CNRS UNS, University de Nice - Sophia Antipolis, 06108 Nice Cedex 02, France
Francesca Rapetti*
Affiliation:
Lab. J.A. Dieudonne, UMR 7351 CNRS UNS, University de Nice - Sophia Antipolis, 06108 Nice Cedex 02, France
Get access

Abstract

Spectral element methods on simplicial meshes, say TSEM, show both the advantages of spectral and finite element methods, i.e., spectral accuracy and geometrical flexibility. We present aTSEM solver of the two-dimensional (2D) incompressible Navier-Stokes equations, with possible extension to the 3D case. It uses a projection method in time and piecewise polynomial basis functions of arbitrary degree in space. The so-called Fekete-Gauss TSEM is employed,i.e., Fekete (resp. Gauss) points of the triangle are used as interpolation (resp. quadrature) points. For the sake of consistency, isoparametric elements are used to approximate curved geometries. The resolution algorithm is based on an efficient Schur complement method, so that one only solves for the element boundary nodes. Moreover, the algebraic system is never assembled, therefore the number of degrees of freedom is not limiting. An accuracy study is carried out and results are provided for classical benchmarks: the driven cavity flow, the flow between eccentric cylinders and the flow past a cylinder.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Bos, L., On certain configurations of points in Rn which are uniresolvant for polynomial interpolation, J. Approx. Theory, 64 (1991), 271280.Google Scholar
[2]Bos, L., Taylor, M.A., Wingate, B.A., Tensor product Gauss-Lobatto points are Fekete points for the cube, Math. Comp., 70 (2001), 15431547.Google Scholar
[3]Botella, O., On the solution of the Navier-Stokes equations using Chebyshev projection schemes with third order accuracy in time, Comput. Fluids, 116 (1997), 107116.Google Scholar
[4]Botella, O., Peyret, R., Benchmark spectral results on the lid driven cavity flow, Comput. Fluids, 27(4) (1998), 421433.Google Scholar
[5]Chorin, A.J., Numerical simulation of the Navier-Stokes equations, Math. Comp., 22 (1968), 745762.Google Scholar
[6]Cools, R., Advances in multidimensional integration, J. of Comput. and Appl. Math., 149 (2002), 112.Google Scholar
[7]Demkowicz, L., Walsh, T., Gerdes, K., Bajer, A.A., 2D hp-adaptative finite element package Fortran 90 implementation (2Dhp90), TICAM Report, 98-14 (1998).Google Scholar
[8]Deville, M.O., Fischer, P.F., Mund, E.H., High-order methods for incompressible flows, Cambridge University Press, 2002.Google Scholar
[9]Dubiner, M., Spectral methods on triangles and other domains, J. Sci. Comput., 6 (1991), 345390.Google Scholar
[10]Ehrenstein, U., Peyret, R., A Chebyshev collocation method for the Navier-Stokes equations with application to double diffusive convection, Int. J. Numer. Methods Fluids, 9 (1989), 427452.Google Scholar
[11]Elghaoui, M., Pasquetti, R., Mixed spectral - boundary element embedding algorithms for the Navier-Stokes equations in the vorticity stream function formulation, J. Comput. Phys., 153 (1999), 82100.Google Scholar
[12]Giraldo, F.X., Warburton, T.A nodal triangle-based spectral element method for the shallow water equations on the sphere, J. of Comput. Phys., 207 (1) (2005), 129150.CrossRefGoogle Scholar
[13]Gordon, W.J., Hall, C., Transfinite element methods: Blending function interpolation over arbitrary curved element domains, Numer. Math., 21 (1973), 109129.Google Scholar
[14]Guermond, J.L., Minev, P., Shen, J., An overview of projection methods for incompressible flows, Comput. Methods Appl.Mech. Engrg., 165 (2006), 60116045.Google Scholar
[15]Hesthaven, J.S., From electrostatic to almost optimal nodal sets for polynomial interpolation in a simplex, SIAM J. Numer. Anal., 35 (1998), 655676.Google Scholar
[16]Hesthaven, J.S., Teng, C.H., Stable spectral methods on tetrahedral elements, SIAM J. Sci. Comput., 21 (2000), 23522380.Google Scholar
[17]Hu, N.H., Guo, X.Z., Katz, I.N., Bounds for eigenvalues and condition numbers in the p- version of the finite element method. Mathematics of Computation, 67 (1998), 14231450.Google Scholar
[18]Hugues, S., Randriamampianina, A., An improved projection scheme applied to pseudospectral methods for the incompressible Navier-Stokes equations, Int. J. Numer. Meth. Fluids, 28 (1998), 501521.Google Scholar
[19]Karniadakis, G.E., Sherwin, S.J., Spectral hp element methods for CFD, Oxford Univ. Press, London (1999).Google Scholar
[20]Karniadakis, G.E., Numerical simulation of forced convection heat transfer from a cylinder in crossflow, Int. J. Heat & Mass Transfer, 31 (1988), 107118.Google Scholar
[21]Khadra, K., Angot, P., Parneix, S., Caltagirone, J.P., Fictitious domain approach for numerical modelling of the Navier-Stokes equations, Int. J. Numer. Meth. Fluids, 34 (2000), 651684.3.0.CO;2-D>CrossRefGoogle Scholar
[22]Maday, Y., Patera, A.T., Ronquist, E.M., An operator-integration-factor splitting method for time-dependent problems: application to incompressible fluid flow, J. of Sci. Comput., 5 (4) (1990), 263292.Google Scholar
[23]Melenk, J.M., On condition numbers in hp-FEM with Gauss-Lobatto based shape functions, J. of Comp. and Appl. Math. 139 (2002) 2148.Google Scholar
[24]Pasquetti, R., Rapetti, F., Spectral element methods on unstructured meshes: comparisons and recent advances, J. Sci. Comp., 27 (1-3) (2006), 377387.Google Scholar
[25]Pasquetti, R., Rapetti, F., Pavarino, L., Zampieri, E., Neumann-Neumann Schur complement methods for Fekete spectral elements, J. of Eng. Math., 56(3) (2006), 323335.Google Scholar
[26]Pasquetti, R., Rapetti, F., Spectral element methods on unstructured meshes: which interpolationpoints ?, Numerical Algorithms, 55(2)(2010), 349366.CrossRefGoogle Scholar
[27]Pavarino, L.F., Zampieri, E., Pasquetti, R., Rapetti, F., Overlapping Schwarz methods for Fekete and Gauss-Lobatto spectral elements, SIAM J. Sci. Comput., 29 (3) (2007), 10731092.Google Scholar
[28]Pontaza, J.P., A spectral element least-squares formulation for incompressible Navier-Stokes flows using triangular nodal elements, J. Comput. Phys., 221(2007) 649665.Google Scholar
[29]Girault, V., Raviart, P.A., Finite element methods for Navier-Stokes equations. Theory and algorithms, Springer Verlag, Berlin (1986).Google Scholar
[30]Smith, B. F., Bjørstad, P. E., D, W.Gropp - Domain Decomposition. Parallel multilevel methods for elliptic partial differential equations, Cambridge University Press (1996).Google Scholar
[31]Solin, P., Segeth, K., I Dolezel, Higher-Order Finite Element methods Chapman & Hall/CRC Press (2003).Google Scholar
[32]Sood, D., Elrod, H., Numerical solution of the incompressible Navier-Stokes equations in doubly connected regions, AIAA Journal, 12(5)(1974), 636641.Google Scholar
[33]Stroud, A.H., Secrest, D., Gaussian quadrature formulas, Prentice Hall (1966).Google Scholar
[34]Stroud, A.H., Approximate calculations of multiple integrals, Prentice Hall (1971).Google Scholar
[35]Taylor, M.A., Wingate, B.A., A generalized diagonal mass matrix spectral element method for non-quadrilateral elements, Appl. Num. Math., 33 (2000), 259265.Google Scholar
[36]Taylor, M.A., Wingate, B.A., Vincent, R.E., An algorithm for computing Fekete points in the triangle, SIAM J. Numer. Anal., 38 (2000), 17071720.Google Scholar
[37]Taylor, M.A., Wingate, B.A., Bos, L.P.A cardinal function algorithm for computing multivariate quadrature points, SIAM J. Numer. Anal. 45(1) (2007), 193205.Google Scholar
[38]Temam, R., Sur l’approximation de la solution des équations de Navier-Stokes par la methode des pas fractionnaires II, Archiv. rat. Mech. Anal., 33 (1969), 377385.Google Scholar
[39]Timmermans, L.J., Minev, P.D., De Vosse, F.N. Van, An approximate projection scheme for incompressible flow using spectral elements, Int. J. Numer. Math., 22 (1996), 673688.Google Scholar
[40]Warburton, T., Pavarino, L., Hesthaven, J.S., A pseudo-spectral scheme for the incompressible Navier-Stokes equations using unstructured nodal elements, J. Comput. Phys., 164 (2000), 121.CrossRefGoogle Scholar
[41]Warburton, T., An explicit construction of interpolation nodes on the simplex, J. Engrg. Math. 56(3) (2006), 247262.CrossRefGoogle Scholar
[42]Williamson, C.H.K., Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers, J. of Fluid Mechanics, 206 (1989), 579627.Google Scholar