Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T13:54:45.572Z Has data issue: false hasContentIssue false

A Moving-Least-Square Immersed Boundary Method for Rigid and Deformable Boundaries in Viscous Flow

Published online by Cambridge University Press:  28 July 2017

Duc-Vinh Le*
Affiliation:
Institute of High Performance Computing, A*STAR, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632
Boo-Cheong Khoo*
Affiliation:
Department of Mechanical Engineering, National University of Singapore, Kent Ridge Crescent, Singapore 119260
*
*Corresponding author. Email addresses:ledv@ihpc.a-star.edu.sg (D.-V. Le), mpekbc@nus.edu.sg (B.-C. Khoo)
*Corresponding author. Email addresses:ledv@ihpc.a-star.edu.sg (D.-V. Le), mpekbc@nus.edu.sg (B.-C. Khoo)
Get access

Abstract

We present a moving-least-square immersed boundary method for solving viscous incompressible flow involving deformable and rigid boundaries on a uniform Cartesian grid. For rigid boundaries, noslip conditions at the rigid interfaces are enforced using the immersed-boundary direct-forcing method. We propose a reconstruction approach that utilizes moving least squares (MLS) method to reconstruct the velocity at the forcing points in the vicinity of the rigid boundaries. For deformable boundaries, MLS method is employed to construct the interpolation and distribution operators for the immersed boundary points in the vicinity of the rigid boundaries instead of using discrete delta functions. The MLS approach allows us to avoid distributing the Lagrangian forces into the solid domains as well as to avoid using the velocity of points inside the solid domains to compute the velocity of the deformable boundaries. The present numerical technique has been validated by several examples including a Poiseuille flow in a tube, deformations of elastic capsules in shear flow and dynamics of red-blood cell in microfluidic devices.

Type
Research Article
Copyright
Copyright © Global-Science Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Peskin, C. S., Numerical analysis of blood flow in the heart, J. Comput. Phys. 25 (1977) 220252.Google Scholar
[2] Peskin, C. S., The immersed boundary method, Acta Numerica 11 (2) (2002) 479517.Google Scholar
[3] Fauci, L. J., Peskin, C. S., A computational model of aquatic animal locomotion, J. Comput. Phys 77 (1988) 85108.Google Scholar
[4] Eggleton, C. D., Popel, A. S., Large deformation of red blood cell ghosts in a simple shear flow, Phys. Fluids 10 (1998) 18341845.CrossRefGoogle Scholar
[5] Dillon, R., Fauci, L. J., Graver, D., A microscale model of bacterial swimming, chemotaxis and substrate transport, J. Theor. Biol. 177 (1995) 325340.Google Scholar
[6] Wang, N. T., Fogelson, A. L., Computational methods for continuum models of platelet aggregation, J. Comput. Phys 151 (1999) 649675.Google Scholar
[7] Lai, M. C., Peskin, C. S., An immersed boundary method with formal second order accuracy and reduced numerical viscosity, J. Comput. Phys. 160 (2000) 707719.CrossRefGoogle Scholar
[8] Silva, A. L. E., Silveira-Neto, A., Damasceno, J., Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method, J. Comput. Phys. 189 (2003) 351370.Google Scholar
[9] Le, D. V., Khoo, B. C., Lim, K. M., An implicit-forcing immersed boundary method for simulating viscous flows in irregular domains, Comput. Methods Appl. Mech. Engrg. 197 (2008) 21192130.CrossRefGoogle Scholar
[10] Su, S. W., Lai, M. C., Lin, C. A., An immersed boundary technique for simulating complex flows with rigid boundary, Comput. Fluids 36 (2007) 313324.CrossRefGoogle Scholar
[11] Mohd-Yusof, J., Combined immersed boundary/B-splines methods for simulations of flows in complex geometry, Annual Research Briefts, Center for Turbulence Research (1997) 317327.Google Scholar
[12] Fadlun, E. A., Verzicco, R., Orlandi, P., Combined immersed-boundary finite-difference methods for three-dimensional complex flows simulations, J. Comput. Phys. 161 (2000) 3560.Google Scholar
[13] Balaras, E., Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations, Computers & Fluids 33 (2004) 375404.Google Scholar
[14] Balaras, E., Yang, J., Nonboundary conforming methods for large-eddy simulations of biological flows, ASME J. Fluids Eng. 127 (2005) 851857.Google Scholar
[15] Yang, J., Balaras, E., An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries, J. Comput. Phys. 215 (2006) 1240.Google Scholar
[16] Yang, J., Stern, F., A simple and efficient direct forcing immersed boundary framework for fluid-structure interactions, J. Comput. Phys. 231 (2012) 50295061.Google Scholar
[17] Liu, C., Hu, C., An efficient immersed boundary treatment for complex moving object, J. Comput. Phys. 274 (2014) 654680.Google Scholar
[18] Uhlmann, M., An immersed boundary method with direct forcing for the simulation of particulate flows, J. Comput. Phys. 209 (2005) 448476.Google Scholar
[19] Udaykumar, H. S., Mittal, R., Rampunggoon, P., Khanna, A., A sharp interface Cartesian grid method for simulating flows with complex moving boundaries, J. Comput. Phys. 174 (2001) 345380.CrossRefGoogle Scholar
[20] Ye, T., Mittal, R., Udaykumar, H. S., Shyy, W., An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundary, J. Comput. Phys. 156 (1999) 209240.Google Scholar
[21] Hu, X., Khoo, B. C., Adams, N., Huang, F., A conservative interface method for compressible flows, J. Comput. Phys. 219 (2006) 553578.CrossRefGoogle Scholar
[22] Tseng, Y. H., Ferziger, J. H., A ghost-cell immersed boundary method for flow in complex geometry, J. Comput. Phys. 192 (2003) 593623.CrossRefGoogle Scholar
[23] Ge, L., Sotiropoulos, F., A numerical method for solving the 3D unsteady incompressible Navier-Stokes equations in curvilinear domains with complex immersed boundaries, J. Comput. Phys. 225 (2007) 17821809.Google Scholar
[24] Borazjani, I., Ge, L., Sotiropoulos, F., Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies, J. Comput. Phys. 227 (2008) 75877620.Google Scholar
[25] Roman, F., Napoli, E., Milici, B., Armenio, V., An improved immersed boundary method for curvilinear grids, Comput. Fluids 38 (2009) 15101527.Google Scholar
[26] Mittal, R., Iaccarino, G., Immersed boundary methods, Annu. Rev. Fluid Mech. 37 (2005) 239261.CrossRefGoogle Scholar
[27] Sotiropoulos, F., Yang, X., Immersed boundary methods for simulating fluid-structure-interaction, Progress in Aerospace Sciences 65 (2014) 121.Google Scholar
[28] Liew, K., Cheng, Y., Kitipornchai, S., Boundary element-free method (BEFM) for two-dimensional elastodynamic analysis using Laplace transform, Int. J. Numer. Meth. Engng 64 (2005) 16101627.Google Scholar
[29] Vanella, M., Balaras, E., A moving-least-squares reconstruction for embedded-boundary formulations, J. Comput. Phys. 228 (2009) 66176628.Google Scholar
[30] Li, D., Wei, A., Luo, K., Fan, J., An improved moving-least-squares reconstruction for immersed boundary method, Int. J. Numer. Meth. Engng 104 (2015) 789804.Google Scholar
[31] Brown, D. L., Cortez, R., Minion, M. L., Accurate projection methods for the incompressible Navier-Stokes equations, J. Comput. Phys. 168 (2001) 464499.Google Scholar
[32] Adams, J., Swarztrauber, P., Sweet, R., FISHPACK: Efficient FORTRAN subprograms for the solution of separable elliptic partial differential equations, Available on the web at http://www.scd.ucar.edu/css/software/fishpack/.Google Scholar
[33] Schumann, U., Sweet, R. A., A direct method for the solution of Poisson's equation with Neumann boundary conditions on a staggered grid of arbitrary size, J. Comput. Phys. 20 (1976) 171182.Google Scholar
[34] Liu, G.-R., Gu, Y.-T., An introduction to meshfree methods and their programming, Springer, 2005.Google Scholar
[35] Knoll, D. A., Keyes, D. E., Jacobian-free Newton-Krylov methods: a survey of approaches and applications, J. Comput. Phys 193 (2004) 357397.Google Scholar
[36] Le, D. V., White, J., Peraire, J., Lim, K.M., Khoo, B. C., An implicit immersed boundary method for three-dimensional fluid-membrane interactions, J. Comput. Phys. 228 (2009) 84278445.CrossRefGoogle Scholar
[37] Cirak, F., Ortiz, M., Schroder, P., Subdivision surfaces: a new paradigm for thin-shell finite-element analysis, Int. J. Numer. Meth. Engng. 47 (2000) 20392072.Google Scholar
[38] Le, D. V., Subdivision elements for large deformation of liquid capsules enclosed by thin shells, Comput. Methods Appl. Mech. Engrg. 199 (2010) 26222632.Google Scholar
[39] Le, D. V., Tan, Z., Hydrodynamic interaction of elastic capsules in bounded shear flow, Commun. Comput. Phys. 16 (2014) 10311055.Google Scholar
[40] Ramanujan, S., Pozrikidis, C., Deformation of liquid capsules enclosed by elastic membrane in simple shear flow: large deformations and the effect of fluid viscosities, J. Fluid Mech. 361 (1998) 117143.Google Scholar
[41] Barthès-Biesel, D., Rallison, J. M., The time-dependent deformation of a capsule freely suspended in a linear shear flow, J. Fluid Mech. 113 (1981) 251267.Google Scholar
[42] Huang, L. R., Cox, E. C., Austin, R. H., Sturm, J. C., Continuous particle separation through deterministic lateral displacement, Science 304 (2004) 987.Google Scholar
[43] Davis, J. A., Inglis, D. W., Morton, K. J., Lawrence, D. A., Huang, L. R., Chou, S. Y., Sturm, J. C., Austin, R. H., Deterministic hydrodynamics: Taking blood apart, PNAS 103 (2006) 1477914784.Google Scholar
[44] Quek, R., Le, D. V., Chiam, K. H., Separation of deformable particles in deterministic lateral displacement devices, Phys. Rev. E 83 (2011) 056301.Google Scholar
[45] Evans, E., Fung, Y. C., Improved measurements of the erythrocyte geometry, Microvasc. Res. 4 (1972) 335347.Google Scholar
[46] Skalak, R., Tozeren, A., Zarda, R. P., Chien, S., Strain energy function of red blood cell membranes, Biophys. J. 13 (1973) 245264.Google Scholar
[47] Zeming, K. K., Ranjan, S., Zhang, Y., Rotational separation of non-spherical bioparticles using I-shaped pillar arrays in a microfluidic device, Nature Communications 4 (2013) 1625.Google Scholar
[48] Skotheim, J.M., Secomb, T.W., Red blood cells and other nonspherical capsules in shear flow: Oscillatory dynamics and the tank-treading-to-tumbling transition, Phys. Rev. Lett. 98 (2007) 078301.Google Scholar
[49] Abkarian, M., Faivre, M., Viallat, A., Swinging of red blood cells under shear flow, Phys. Rev. Lett. 98 (2007) 188302.Google Scholar