Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T07:50:53.639Z Has data issue: false hasContentIssue false

Numerical Study of Nanosecond Pulsed Plasma Actuator in Laminar Flat Plate Boundary Layer

Published online by Cambridge University Press:  02 November 2016

J. G. Zheng*
Affiliation:
Temasek Laboratories, National University of Singapore, Singapore 117411
J. Li*
Affiliation:
Temasek Laboratories, National University of Singapore, Singapore 117411
Z. J. Zhao*
Affiliation:
Temasek Laboratories, National University of Singapore, Singapore 117411
Y. D. Cui*
Affiliation:
Temasek Laboratories, National University of Singapore, Singapore 117411
B. C. Khoo*
Affiliation:
Temasek Laboratories, National University of Singapore, Singapore 117411
*
*Corresponding author. Email addresses:tslzhen@nus.edu.sg, zhengjg9705@hotmail.com (J. G. Zheng), tslljm@nus.edu.sg (J. Li), tslzhao@nus.edu.sg (Z. J. Zhao), tslcyd@nus.edu.sg (Y. D. Cui), mpekbc@nus.edu.sg (B. C. Khoo)
*Corresponding author. Email addresses:tslzhen@nus.edu.sg, zhengjg9705@hotmail.com (J. G. Zheng), tslljm@nus.edu.sg (J. Li), tslzhao@nus.edu.sg (Z. J. Zhao), tslcyd@nus.edu.sg (Y. D. Cui), mpekbc@nus.edu.sg (B. C. Khoo)
*Corresponding author. Email addresses:tslzhen@nus.edu.sg, zhengjg9705@hotmail.com (J. G. Zheng), tslljm@nus.edu.sg (J. Li), tslzhao@nus.edu.sg (Z. J. Zhao), tslcyd@nus.edu.sg (Y. D. Cui), mpekbc@nus.edu.sg (B. C. Khoo)
*Corresponding author. Email addresses:tslzhen@nus.edu.sg, zhengjg9705@hotmail.com (J. G. Zheng), tslljm@nus.edu.sg (J. Li), tslzhao@nus.edu.sg (Z. J. Zhao), tslcyd@nus.edu.sg (Y. D. Cui), mpekbc@nus.edu.sg (B. C. Khoo)
*Corresponding author. Email addresses:tslzhen@nus.edu.sg, zhengjg9705@hotmail.com (J. G. Zheng), tslljm@nus.edu.sg (J. Li), tslzhao@nus.edu.sg (Z. J. Zhao), tslcyd@nus.edu.sg (Y. D. Cui), mpekbc@nus.edu.sg (B. C. Khoo)
Get access

Abstract

Nanosecond (ns) pulsed dielectric barrier discharge (DBD) actuator in a laminar flat plate boundary layer is investigated numerically in an attempt to gain some new insights into the understanding of ns DBD actuation mechanism. Special emphasis is put on the examination, separation and comparison of behaviors of discharge induced micro shock wave and residual heat as well as on the investigation of response of external flow to the two effects. The shock wave is found to introduce highly transient, localized perturbation to the flow and be able to significantly alter the flow pattern shortly after its initiation. The main flow tends to quickly recover to close to its undisturbed state due to the transient nature of perturbation. However, with the shock decay and final disappearance, another perturbation source in the vicinity of discharge region, which contains contribution from both residual heat and shock, becomes increasingly pronounced and eventually develops into a perturbation wave train in the boundary layer. The perturbation is relatively weak and may not be a Tollmien-Schlichting (TS) wave and not trigger the laminar-turbulent transition of boundary layer. Instead, it is more likely to manipulate the flow stability to achieve the strong control authority of this kind of actuation in the case of flow separation control. In addition, a parametric study over the different electrical and hydrodynamic parameters is also conducted.

Type
Research Article
Copyright
Copyright © Global-Science Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Roupassov, D. V., Nikipelov, A. A., Nudnova, M. M., and Starikovskii, A. Yu., Flow separation control by plasma actuator with nanosecond pulsed-periodic discharge, AIAA J., 47(1)(2009), 168185.Google Scholar
[2] Starikovskii, A. Yu., Nikipelov, A. A., Nudnova, M. M., and Roupassov, D. V., SDBD plasma actuator with nanosecond pulse-periodic discharge, Plasma Sources Sci. Technol., 18(2009), 034015.Google Scholar
[3] Rethmel, C., Little, J., Takashima, K., Sinha, A., Adamovich, I., and Samimy, M., Flow separation control using nanosecond pulse driven DBD plasma actuators, International Journal of Flow Control., 3(4)(2011), 213232.CrossRefGoogle Scholar
[4] Little, J., Takashima, K., Nishihara, M., Adamovich, I., and Samimy, M., Separation control with nanosecond-pulse-driven dielectric barrier discharge plasma actuators, AIAA J., 50(2)(2012), 350365.CrossRefGoogle Scholar
[5] Kato, K., Breitsamter, C., and Obi, S., Flow separation control over a GÖ 387 airfoil by nanosecond pulse-periodic discharge, Exp Fluids., 55(2014), 1795.Google Scholar
[6] Kelley, C. L., Bowles, P. O., Cooney, J., He, C., Corke, T. C., Osborne, B. A., Silkey, J. S., and Zehnle, J., Leading-edge separation control using alternating-current and nanosecond-pulse plasma actuators, AIAA J., 52(9)(2014), 18711884.Google Scholar
[7] Nishihara, M., Takashima, K., Rich, J. W., and Adamovich, I. V., Mach 5 bow shock control by a nanosecond pulse surface dielectric barrier discharge, Phys. Fluids., 23(2011), 066101.Google Scholar
[8] Correale, G., Michelis, T. and Kotsonis, M., NS-DBD plasma actuation on a backward facing step, 52nd Aerospace Sciences Meeting, 13-17 January 2014, National Harbor, Maryland., AIAA paper, (2014), 2014-0325.CrossRefGoogle Scholar
[9] Lehmann, R., Akins, D. and Little, J., Effects of Ns-DBD plasma actuators on turbulent shear layers, 7th AIAA Flow Control Conference, 16-20 June 2014, Atlanta, GA., AIAA paper, (2014), 2014-2220.Google Scholar
[10] Benard, N., Zouzou, N., Claverie, A., Sotton, J., and Moreau, E., Optical visualization and electrical characterization of fast-rising pulsed dielectric barrier discharge for airflow control applications, J. Appl. Phys., 111(2012), 033303.CrossRefGoogle Scholar
[11] Takashima, K., Zuzeek, Y., Lempert, W. R., and Adamovich, I. V., Characterization of a surface dielectric barrier discharge plasma sustained by repetitive nanosecond pulses, Plasma Sources Sci. Technol., 20(2011), 055009.Google Scholar
[12] Dawson, R. and Little, J., Characterization of nanosecond pulse driven dielectric barrier discharge plasma actuators for aerodynamic flow control, J. Appl. Phys., 113(2013), 103302.Google Scholar
[13] Dawson, Robyn A. and Little, J., Effects of pulse polarity on nanosecond pulse driven dielectric barrier discharge plasma actuators, J. Appl. Phys., 115(2014), 043306.CrossRefGoogle Scholar
[14] Zheng, J. G., Zhao, Z. J., Li, J., Cui, Y. D. and Khoo, B. C., Numerical simulation of nanosecond pulsed dielectric barrier discharge actuator in a quiescent flow, Phys. Fluids., 26(2014), 036102.Google Scholar
[15] Correale, G., Michelis, T., Ragni, D., Kotsonis, M. and Scarano, F., Nanosecond-pulsed plasma actuation in quiescent air and laminar boundary layer, J. Phys. D: Appl. Phys., 47(2014), 105201.Google Scholar
[16] Unfer, T. and Boeuf, J. P., Modelling of a nanosecond surface discharge actuator, J. Phys. D: Appl. Phys., 42(2009), 194017.Google Scholar
[17] Gaitonde, D. V., and McCrink, M. H., A semi-empirical model of a nanosecond pulsed plasma actuator for flow control simulations with LES, 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 09 - 12 January 2012, Nashville, Tennessee., AIAA paper, (2012), 2012-0184.CrossRefGoogle Scholar
[18] Gaitonde, D. V., Analysis of plasma-based flow control mechanisms through large-eddy simulations, Comput. Fluids, 85(2013), 1926.CrossRefGoogle Scholar
[19] Takashima, K., Yin, Z. Y., and Adamovich, I. V., Measurements and kinetic modeling of energy coupling in volume and surface nanosecond pulse discharges, Plasma Sources Sci. Technol., 22(2013), 015103.Google Scholar
[20] van Leer, B., Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method, J. Comput. Phys., 32(1)(1979), 101136.CrossRefGoogle Scholar
[21] Roe, P. L., Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys., 43(2)(1981), 357372.Google Scholar
[22] Blazek, J., Computational Fluid Dynamics: Principles and Applications, Elsevier Science Ltd, Dlington, Oxford, UK, 2001.Google Scholar
[23] Schlichting, H., Boundary-Layer Theory, McGraw Hill, New York, U.S. 1968.Google Scholar
[24] Montello, A., Burnette, D., Nishihara, M., Lempert, W. R., and Adamovich, I. V., Dynamics of rapid localized heating in nanosecond pulse discharges for high speed flow control, J. Fluid Sci. Technol., 8(2)(2013), 147159.Google Scholar
[25] Leonov, S. B., Petrishchev, V. and Adamovich, I. V, Dynamics of energy coupling and thermalization in barrier discharges over dielectric and weakly conducting surfaces on μs to ms time scales, J. Phys. D: Appl. Phys., 47(2014), 465201.Google Scholar