Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-29T04:57:02.515Z Has data issue: false hasContentIssue false

A Preconditioned 3-D Multi-Region Fast Multipole Solver for Seismic Wave Propagation in Complex Geometries

Published online by Cambridge University Press:  20 August 2015

S. Chaillat*
Affiliation:
Georgia Tech, College of Computing, Atlanta, USA POems (CNRS-ENSTA-INRIA), Appl. Math. Dept., ENSTA, Paris, France
J.F. Semblat*
Affiliation:
Université Paris Est, IFSTTAR, Paris, France
M. Bonnet*
Affiliation:
POems (CNRS-ENSTA-INRIA), Appl. Math. Dept., ENSTA, Paris, France
*
Corresponding author.Email:stephanie.chaillat@ensta-paristech.fr
Email address:semblat@lcpc.fr
Get access

Abstract

The analysis of seismic wave propagation and amplification in complex geological structures requires efficient numerical methods. In this article, following up on recent studies devoted to the formulation, implementation and evaluation of 3-D single- and multi-region elastodynamic fast multipole boundary element methods (FM-BEMs), a simple preconditioning strategy is proposed. Its efficiency is demonstrated on both the single- and multi-region versions using benchmark examples (scattering of plane waves by canyons and basins). Finally, the preconditioned FM-BEM is applied to the scattering of plane seismic waves in an actual configuration (alpine basin of Grenoble, France), for which the high velocity contrast is seen to significantly affect the overall efficiency of the multi-region FM-BEM.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Alléon, G., Benzi, M., Giraud, L., Sparse approximation inverse preconditioning for dense linear systems arising in computational electromagnetics, Numer. Algor., 16 (1997), 115.CrossRefGoogle Scholar
[2]Bard, P. Y., Chaljub, E., Cornou, C., Cotton, F., and Gueguen, P., editors. Third Int. Symp. on the Effects of Surface Geology on Seismic Motion, Grenoble, France, 2006.Google Scholar
[3]M., Bonnet, Boundary Integral Equation Method for Solids and Fluids, Wiley, 1999.Google Scholar
[4]Çakir, Ö, The multilevel fast multipole method for forward modelling the multiply scattered seismic surface waves, Geophys. J. Int., 167 (2006), 663678.CrossRefGoogle Scholar
[5]Carpentieri, B., Duff, I. S., Giraud, L. and Sylvand, G., Combining fast multipole techniques and an approximate inverse preconditioner for large electromagnetism calculations, SIAM J. Sci. Comput., 27 (2005), 774792.Google Scholar
[6]Chaillat, S., Bonnet, M. and Semblat, J.-F., A multi-level fast multipole BEM for 3-D elastody-namics in the frequency domain, Comput. Meth. Appl. Mech. Engng., 197 (2008), 42334249.Google Scholar
[7]Chaillat, S., Bonnet, M. and Semblat, J.-F., A new fast multi-domain BEM to model seismic wave propagation and amplification in 3D geological structures, Geophys. J. Int., 177 (2009), 509531.Google Scholar
[8]Chaljub, E., Komatitsch, D., Vilotte, J. P., Capdeville, Y., Valette, B. and Festa, G., Spectral-element analysis in seismology. Adv. Geophys., 48 (2007), 365419.Google Scholar
[9]Darve, E., The fast multipole method: Numerical implementation, J. Comp. Phys., 160 (2000), 195240.Google Scholar
[10]Darve, E. and Havé, P., A fast multipole method for maxwell equations stable at all frequencies, Phil. Trans. Roy. Soc. (London), A362 (2004), 603628.Google Scholar
[11]Delépine, N. and Semblat, J.F.. Site effects in a deep alpine valley for various seismic sources. Third Int. Symp. on the Effects of Surface Geology on Seismic Motion, Grenoble, France, 2006.Google Scholar
[12]Epton, M. A. and Dembart, B., Multipole translation theory for the three-dimensional Laplace and Helmholtz equations, SIAM J. Sci. Comp., 16 (1995), 865897.Google Scholar
[13]Eringen, A. C. and Suhubi, E. S., Elastodynamics, II-linear theory, Academic Press, 1975.Google Scholar
[14]Frayssé, V., Giraud, L., and Gratton, S., A set of Flexible-GMRES routines for real and complex arithmetics. CERFACS Technical Report TR/PA/98/20, public domain software available on www.cerfacs.fr/algor/Softs, 1998.Google Scholar
[15]Fujiwara, H., The fast multipole method for solving integral equations of three-dimensional topography and basin problems, Geophys. J. Int., 140 (2000), 198210.Google Scholar
[16]Gumerov, N. A. and Duraiswami, R., Fast multipole methods for the Helmholtz equation in three dimensions, Elsevier, 2005.Google Scholar
[17]Hughes, T. J. R., Reali, A. and Sangalli, G., Duality and Unified Analysis of Discrete Approximations in Structural Dynamics and Wave Propagation: Comparison of p-method Finite Elements with k-method NURBS, Comp. Meth. Appl. Mech. Engng., 197 (2008), 41044124.Google Scholar
[18]Ihlenburg, F. and Babuška, I., Dispersion analysis and error estimate of Galerkin finite element methods for the Helmholtz equation, Int. J. Numer. Meth. Engng., 38 (1995), 3745–3774.CrossRefGoogle Scholar
[19]Jiang, L. J. and Chew, W. C., A mixed-form fast multipole algorithm, IEEE Trans. Antennas Propag., 53 (2005), 41454156.Google Scholar
[20]Kupradze, V. D., Dynamical problems in elasticity, Progress in solids mechanics (Vol. 3), North Holland, 1963.Google Scholar
[21]C.C., Lu and W.C., Chew, A multilevel algorithm for solving a boundary integral equation of wave scattering, Microwave Opt. Technol. Lett., 7 (1994), 466470.Google Scholar
[22]Mossessian, T. K. and Dravinski, M., Amplification of elastic waves by a three dimensional valley. Part 1: Steady state response. Earthquake Engng. Struct. Dyn., 19 (1990), 667680.Google Scholar
[23]Nishimura, N., Fast multipole accelerated boundary integral equation methods, Appl. Mech. Rev., 55 (2002), 299324.Google Scholar
[24]Otani, Y. and Nishimura, N., A periodic FMM for Maxwell’s equations in 3D and its application to problems related to photonic crystals. J. Comp. Phys., 227 (2008), 46304652.CrossRefGoogle Scholar
[25]Pak, R. Y. S. and Guzina, B. B., Seismic soil-structure interaction analysis by direct boundary element methods, Int. J. Solids Struct., 36 (1999), 47434766.Google Scholar
[26]Rüberg, T., Non-conforming Coupling of Finite and Boundary Element Methods in Time Domain, PhD thesis (TU Graz, Austria), 2007.Google Scholar
[27]Saad, Y., A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Comput., 14 (1993), 461469.CrossRefGoogle Scholar
[28]Saad, Y., Iterative methods for sparse linear systems, SIAM, 2003.Google Scholar
[29]Saad, Y. and Schultz, M. H., M. H., GMRES - a generalized minimal residual algorithm for solving nonsymmetric linear-systems, SIAM J. Sci. Statist. Comput., 7 (1986), 856869.Google Scholar
[30]Sánchez-Sesma, F. J., Diffraction of elastic waves by three-dimensional surface irregularities, Bull. Seism. Soc. Am., 73 (1983), 16211636.Google Scholar
[31]Semblat, J. F., Kham, M., Parara, E., Bard, P. Y., Pitilakis, K., Makra, K., Raptakis, D., Site effects: basin geometry vs soil layering, Soil Dynamics and Earthquake Eng. 25 (2005), 529538.Google Scholar
[32]Semblat, J. F., Pecker, A., Waves and vibrations in soils: earthquakes, traffic, shocks, construction works, IUSS Press, 2009Google Scholar
[33]Sertel, K. and Volakis, J. L., Incomplete LU preconditioner for FMM implementation, Microwave and Optical Technology Letters, 26 (2000), 265267.Google Scholar
[34]Sylvand, G., La méthode multipôle rapide en éléctromagnétisme: performances, par-allélisation, applications, Ph.D. thesis (ENPC, Paris, France), 2002, http://pastel.paristech.org/308/.Google Scholar
[35]Takahashi, T., Nishimura, N. and Kobayashi, S., A fast BIEM for three-dimensional elastody-namics in time domain, Engng. Anal. Bound. Elem., 27 (2003), 491506.Google Scholar
[36]Vallon, M.. Estimation de l’épaisseur d’alluvions et sédiments quaternaires dans la région grenobloise par inversion des anomalies gravimétriques. Technical report, LGGE, Université Joseph Fourier, 1999. IPSN/CNRS (in French)Google Scholar