No CrossRef data available.
Article contents
Preface: Special Issue on Modeling Electrostatics in Molecular Biology (MEMB)
Published online by Cambridge University Press: 03 June 2015
Abstract
An abstract is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
- Type
- Introduction
- Information
- Copyright
- Copyright © Global Science Press Limited 2013
References
[1]Pang, X. and Zhou, H.-X., Poisson-Boltzmann calculations: van der Waals or molecular surface?, Commun. Comput. Phys., 13 (2013), 1–12.CrossRefGoogle ScholarPubMed
[2]Wang, L., Zhang, Z., Rocchia, W. and Alexov, E., Using DelPhi capabilities to mimic protein’s conformational reorganization with amino acid specific dielectric constants, Commun. Comput. Phys., 13 (2013), 13–30.CrossRefGoogle ScholarPubMed
[3]Zheng, F. and Zhan, C.-G., Computational modeling of solvent effects on protein-ligand interactions using fully polarizable continuum model and rational drug design, Commun. Comput. Phys., 13 (2013), 31–60.Google Scholar
[4]Decherchi, S., Colmenares, J., Catalano, C. E., Spagnuolo, M., Alexov, E. and Rocchia, W., Between algorithm and model: Different molecular surface definitions for the Poisson-Boltzmann based electrostatic characterization of biomolecules in solution, Commun. Comput. Phys., 13 (2013), 61–89.Google Scholar
[5]Date, M. S. and Dominy, B. N., Modeling the influence of salt on the hydrophobic effect and protein fold stability, Commun. Comput. Phys., 13 (2013), 90–106.Google Scholar
[6]Zhang, B., Lu, B., Cheng, X., Huang, J., Pitsianis, N. P., Sun, X. and McCammon, J. A., Mathematical and numerical aspects of the adaptive fast multipole Poisson-Boltzmann solver, Commun. Comput. Phys., 13 (2013), 107–128.CrossRefGoogle Scholar
[7]Song, W., Lin, Y., Baumketner, A., Deng, S., Cai, W. and Jacobs, D. J., Effect of the reaction field on molecular forces and torques revealed by an image-charge solvation model, Commun. Comput. Phys., 13 (2013), 129–149.Google Scholar
[8]Mirzadeh, M., Theillard, M., Helgad, A., Boy, D. and Gibou, F., An adaptive, finite difference solver for the nonlinear Poisson-Boltzmann equation with applications to biomolecular computations, Commun. Comput. Phys., 13 (2013), 150–173.CrossRefGoogle Scholar
[9]Xie, D. and Volkmer, H. W., A modified nonlocal continuum electrostatic model for protein in water and its analytical solutions for ionic Born models, Commun. Comput. Phys., 13 (2013), 174–194.Google Scholar
[10]Mackoy, T., Harris, R. C., Johnson, J., Mascagni, M. and Fenley, M. O., Numerical optimization of a walk-on-spheres solver for the linear Poisson-Boltzmann equation, Commun. Comput. Phys., 13 (2013), 195–206.Google Scholar
[11]Wang, L., Witham, S., Zhang, Z., Li, L., Hodsdon, M. and Alexov, E., In silico investigation of pH-dependence of prolactin and human growth hormone binding to human prolactin receptor, Commun. Comput. Phys., 13 (2013), 207–222.CrossRefGoogle ScholarPubMed
[12]Brice, A. R. and Dominy, B. N., Examining electrostatic influences on base-flipping: A comparison of TIP3P and GB solvent models, Commun. Comput. Phys., 13 (2013), 223–237.Google Scholar
[13]Martins, J. M., Ramos, R. M. and Moreira, I. S., Structural determinants of a typical leucine-rich repeat protein, Commun. Comput. Phys., 13 (2013), 238–255.Google Scholar
[14]Votapka, L. W., Czapla, L., Zhenirovskyy, M. and Amaro, R. E., DelEnsembleElec: Computing ensemble-averaged electrostatics using DelPhi, Commun. Comput. Phys., 13 (2013), 256–268.Google Scholar
[15]Sarkar, S., Witham, S., Zhang, J., Zhenirovskyy, M., Rocchia, W. and Alexov, E., DelPhi web server: A comprehensive online suite for electrostatic calculations of biological macromolecules and their complexes, Commun. Comput. Phys., 13 (2013), 269–284.Google Scholar
[16]Chen, D. and Wei, G.-W., Quantum dynamics in continuum for proton transport I: Basic formulation, Commun. Comput. Phys., 13 (2013), 285–324.CrossRefGoogle ScholarPubMed