Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T21:59:03.324Z Has data issue: false hasContentIssue false

The Split-Operator Technique for the Study of Spinorial Wavepacket Dynamics

Published online by Cambridge University Press:  24 March 2015

A. Chaves*
Affiliation:
Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60455-900 Fortaleza, Ceará, Brazil
G. A. Farias
Affiliation:
Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60455-900 Fortaleza, Ceará, Brazil
F. M. Peeters
Affiliation:
Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60455-900 Fortaleza, Ceará, Brazil Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
R. Ferreira
Affiliation:
Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60455-900 Fortaleza, Ceará, Brazil Laboratoire Pierre Aigrain, Ecole Normale Superieure, 24 Rue Lhomond, F-75005, Paris, France
*
*Corresponding author. Email addresses: andrey@fisica.ufc.br (A. Chaves), gil@fisica.ufc.br (G. A. Farias), francois.peeters@uantwerpen.be (F. M. Peeters), robson.ferreira@lpa.ens.fr (R. Ferreira)
Get access

Abstract

The split-operator technique for wave packet propagation in quantum systems is expanded here to the case of propagatingwave functions describing Schrödinger particles, namely, charge carriers in semiconductor nanostructures within the effective mass approximation, in the presence of Zeeman effect, as well as of Rashba and Dresselhaus spin-orbit interactions. We also demonstrate that simple modifications to the expanded technique allow us to calculate the time evolution of wave packets describing Dirac particles, which are relevant for the study of transport properties in graphene.

Type
Research Article
Copyright
Copyright © Global-Science Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Degani, M.H. and Maialle, M. Z., Numerical Calculations of the Quantum States in Semiconductor Nanostructures, J. Comp. Theor. Nanosci. 7 (2010) 454.Google Scholar
[2]Yuan, S., De Raedt, H., and Katsnelson, M. I., Modeling electronic structure and transport properties of graphene with resonant scattering centers, Phys. Rev. B 82 (2010) 115448.CrossRefGoogle Scholar
[3]Weisse, A., Wellein, G., Alvermann, A., and Fehske, H., The Kernel Polynomial Method, Rev. Mod. Phys. 78 (2006) 275.Google Scholar
[4]Szafran, B. and Peeters, F. M., Lorentz-force induced asymmetry in the Aharonov-Bohm effect in a three-terminal semiconductor quantum ring, Europhys. Lett. 70 (2005) 810.CrossRefGoogle Scholar
[5]Chwiej, T and Szafran, B, Fractional conductance oscillations in quantum rings: wave packet picture of transport in a few-electron system, J. Phys.: Condens. Matter 25 (2013) 155802.Google Scholar
[6]Chaves, A., Farias, G. A., Peeters, F. M., and Szafran, B., Wave packet dynamics in semiconductor quantum rings of finite width, Phys. Rev. B 80 (2009) 125331.Google Scholar
[7]Romo, R., Villavicencio, J., and Ladrón de Guevara, M. L., Trapping effects in wave-packet scattering in a double-quantum-dot Aharonov-Bohm interferometer, Phys. Rev. B 86 (2012) 085447.Google Scholar
[8]Petrović, M. D., Peeters, F. M., Chaves, A., and Farias, G. A., Conductance maps of quantum rings due to a local potential perturbation, J. Phys.: Condens. Matter 25 (2013) 495301.Google Scholar
[9]Kalina, R., Szafran, B., Bednarek, S., and Peeters, F. M., Magnetic-Field Asymmetry of Electron Wave Packet Transmission in Bent Channels Capacitively Coupled to a Metal Gate, Phys. Rev. Lett. 102 (2009) 066807.Google Scholar
[10]Kreisbeck, C., Kramer, T., Buchholz, S. S., Fischer, S. F., Kunze, U., Reuter, D., and Wieck, A. D., Phase shifts and phase π jumps in four-terminal waveguide Aharonov-Bohm interferometers, Phys. Rev. B 82 (2010) 165329.Google Scholar
[11]Fillion-Gourdeau, F., Lorin, E., and Bandrauk, A. D., A split-step numerical method for the time-dependent Dirac equation in 3-D axisymmetric geometry, J. Comp. Phys. 272 (2014) 559.CrossRefGoogle Scholar
[12]Demikhovskii, V. Ya., Maksimova, G. M., Perov, A. A., and Frolova, E. V., Space-time evolution of Dirac wave packets, Phys. Rev. A 82 (2010) 052115.Google Scholar
[13]Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grig-orieva, I. V., Firsov, A. A., Electric Field Effect in Atomically Thin Carbon Films, Science 306 (2004) 666669.Google Scholar
[14]Schrödinger, E., Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl. 24 (1930) 418.Google Scholar
[15]Rusin, T.M. and Zawadzki, W., Zitterbewegung of electrons in graphene in a magnetic field, Phys. Rev. B 78 (2008) 125419.CrossRefGoogle Scholar
[16]Zawadzki, W. and Rusin, T. M., Zitterbewegung (trembling motion) of electrons in semiconductors: a review, J. Phys.: Condens. Matter 23 (2011) 143201.Google Scholar
[17]Katsnelson, M. I., Novoselov, K. S., and Geim, A. K., Chiral tunneling and the Klein paradox in graphene, Nat. Phys. 2 (2006) 620.Google Scholar
[18]Peskin, U., Kosloff, R., and Moiseyev, N., The solution of the time dependent Schrdinger equation by the (t, t’) method: The use of global polynomial propagators for time dependent Hamiltonians, J. Chem. Phys. 100 (1994) 8849.CrossRefGoogle Scholar
[19]Alvermann, A. and Fehske, H., High-order commutator-free exponential time-propagation of driven quantum systems, J. Comp. Phys. 230 (2011) 5930.Google Scholar
[20]Tal-Ezer, H. and Kosloff, R., An accurate and efficient scheme for propagating the time dependent Schrödinger equation, J. Chem. Phys. 81 (1984) 3967.Google Scholar
[21]Fehske, H., Schleede, J., Schubert, G., Wellein, G., Filinov, V. S., and Bishop, A. R., Numerical approaches to time evolution of complex quantum systems, Phys. Lett. A 373 (2009) 2182.CrossRefGoogle Scholar
[22]McLachlan, R.I. and Quispel, G. R. W., Splitting methods, Acta Numerica 11 (2002) 341.Google Scholar
[23]Dattoli, G., Ottaviani, P. L., Segreto, A., and Torre, A., Symmetric-split-operator techniques and finite-difference methods for the solution of classical and quantum evolution problems, Il Nuovo Cimento B 111 (1996) 825.CrossRefGoogle Scholar
[24]Schliemann, J., Cyclotron motion and magnetic focusing in semiconductor quantum wells with spin-orbit coupling, Phys. Rev. B 77 (2008) 125303.CrossRefGoogle Scholar
[25]Biswas, T. and Ghosh, T. K., Wave packet dynamics and zitterbewegung of heavy holes in a quantizing magnetic field, J. Appl. Phys. 115 (2014) 213701.Google Scholar
[26]Demikhovskii, V. Ya., Maksimova, G. M., and Frolova, E. V., Wave packet dynamics in a two-dimensional electron gas with spin orbit coupling: Splitting and zitterbewegung, Phys. Rev. B 78 (2008) 115401.CrossRefGoogle Scholar
[27]Watanabe, N. and Tsukada, M., Fast and stable method for simulating quantum electron dynamics, Phys. Rev. E 62 (2000) 2914.CrossRefGoogle ScholarPubMed
[28]Suzuki, M., Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations, Phys. Lett. A 146 (1990) 319.CrossRefGoogle Scholar
[29]Press, William H., Flannery, Brian P., Teukolsky, Saul A., Vetterling, William T., Numerical Recipes in Fortran 77, Cambridge University Press, Cambridge, 1992, pp. 2299.Google Scholar
[30]Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., and Geim, A. K., The electronic properties of graphene, Rev. Mod. Phys. 81 (2009) 109.Google Scholar
[31]Zhou, S. Y., Gweon, G.-H., Fedorov, A. V., First, P. N., de Heer, W. A., Lee, D.-H., Guinea, F., Castro Neto, A. H., and Lanzara, A., Substrate-induced band gap opening in epitaxial graphene, Nat. Mat. 6 (2007) 770.Google Scholar
[32]Badalyan, S. M., Matos-Abiague, A., Vignale, G., and Fabian, J., Beating of Friedel oscillations induced by spin-orbit interaction, Phys. Rev. B 81 (2010) 205314.Google Scholar
[33]Badalyan, S. and Fabian, J., Spin Edge Helices in a Perpendicular Magnetic Field, Phys. Rev. Lett. 105 (2010) 186601.Google Scholar
[34]Rakhimov, Kh. Yu., Chaves, A., Farias, G. A., and Peeters, F. M., Wavepacket scattering of Dirac and Schrödinger particles on potential and magnetic barriers, J. Phys.: Condens. Matter 23 (2011) 275801.Google Scholar
[35]Maksimova, G. M., Demikhovskii, V. Ya. and Frolova, E. V., Wave packet dynamics in a mono-layer graphene, Phys. Rev. B 78 (2008) 235321.Google Scholar
[36]Allain, P.E. and Fuchs, J. N., Klein tunneling in graphene: optics with massless electrons, Eur. Phys. J. B 83 (2011) 301.Google Scholar
[37]W, C.. Beenakker, J., Colloquium: Andreev reflection and Klein tunneling in graphene, Rev. Mod. Phys. 80 (2008) 1337.Google Scholar
[38]Pereira, J. M., Chaves, A., Farias, G. A., and Peeters, F. M., Klein tunneling in single and multiple barriers in graphene, Semic. Sci. Tech. 25 (2010) 033002.Google Scholar
[39]Matulis, A. and Peeters, F. M., Quasibound states of quantum dots in single and bilayer graphene, Phys. Rev. B 77 (2008) 115423.Google Scholar