Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-13T23:50:02.707Z Has data issue: false hasContentIssue false

Two-Size Moment Multi-Fluid Model: A Robust and High-Fidelity Description of Polydisperse Moderately Dense Evaporating Sprays

Published online by Cambridge University Press:  05 October 2016

Frédérique Laurent*
Affiliation:
Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay, Grande Voie des Vignes, 92295 Châtenay-Malabry cedex, France Fédération de Mathématiques de l'Ecole Centrale Paris, FR CNRS 3487, France
Alaric Sibra*
Affiliation:
Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay, Grande Voie des Vignes, 92295 Châtenay-Malabry cedex, France Fédération de Mathématiques de l'Ecole Centrale Paris, FR CNRS 3487, France Département d'Energétique Fondamentale et Appliquée, ONERA, 91120 Palaiseau, France
François Doisneau*
Affiliation:
Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay, Grande Voie des Vignes, 92295 Châtenay-Malabry cedex, France Fédération de Mathématiques de l'Ecole Centrale Paris, FR CNRS 3487, France Département d'Energétique Fondamentale et Appliquée, ONERA, 91120 Palaiseau, France
*
*Corresponding author. Email addresses:frederique.laurent@ecp.fr (F. Laurent), alaric.sibra@gmail.com (A. Sibra, presently at Airbus Defense & Space), francois.doisneau@centraliens.net (F. Doisneau, presently at Sandia National Laboratories)
*Corresponding author. Email addresses:frederique.laurent@ecp.fr (F. Laurent), alaric.sibra@gmail.com (A. Sibra, presently at Airbus Defense & Space), francois.doisneau@centraliens.net (F. Doisneau, presently at Sandia National Laboratories)
*Corresponding author. Email addresses:frederique.laurent@ecp.fr (F. Laurent), alaric.sibra@gmail.com (A. Sibra, presently at Airbus Defense & Space), francois.doisneau@centraliens.net (F. Doisneau, presently at Sandia National Laboratories)
Get access

Abstract

High fidelity modeling and simulation of moderately dense sprays at relatively low cost is still a major challenge for many applications. For that purpose, we introduce a new multi-fluid model based on a two-size moment formalism in sections, which are size intervals of discretization. It is derived from a Boltzmann type equation taking into account drag, evaporation and coalescence, which are representative of the complex terms that arise in multi-physics environments. The closure of the model comes from a reconstruction of the distribution. A piecewise affine reconstruction in size is thoroughly analyzed in terms of stability and accuracy, a key point for a high-fidelity and reliable description of the spray. Robust and accurate numerical methods are then developed, ensuring the realizability of the moments. The model and method are proven to describe the spray with a high accuracy in size and size-conditioned variables, resorting to a lower number of sections compared to one size moment methods. Moreover, robustness is ensured with efficient and tractable algorithms despite the numerous couplings and various algebra thanks to a tailored overall strategy. This strategy is successfully tested on a difficult 2D unsteady case, which proves the efficiency of the modeling and numerical choices.

Type
Research Article
Copyright
Copyright © Global-Science Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Achim, P.. Simulation de collisions, coalescence et rupture de gouttes par une approche lagrangienne: Application aux moteurs à propergol solide. PhD thesis, Faculté des Sciences de l’Université de Rouen, 1999.Google Scholar
[2] Amsden, A. A., O’Rourke, P. J., and Butler, T. D.. Kiva II, a computer program for chemically reactive flows with sprays. Technical Report LA-11560-MS, Report Los Alamos National Laboratory, Los Alamos, New Mexico, 1989.CrossRefGoogle Scholar
[3] Bird, G. A.. Molecular gas dynamics and the direct simulation of gas flows. Oxford Science Publications, 42, 1994.Google Scholar
[4] Bouchut, F., Jin, S., and Li, X.. Numerical approximations of pressureless and isothermal gas dynamics. SIAM J. Numer. Anal., 41(1):135158, 2003.Google Scholar
[5] Costabile, F., Gualtieri, M. I., and Luceri, R.. A modification of Muller's method. CALCOLO, 43(1):3950, 2006.Google Scholar
[6] De Chaisemartin, S.. Eulerian models and numerical simulation of turbulent dispersion for polydisperse evaporating sprays. PhD thesis, Ecole Centrale Paris, France, 2009. Available online at http://tel.archives-ouvertes.fr/tel-00443982/en/.Google Scholar
[7] Desjardins, O., Fox, R.O., and Villedieu, P.. A quadrature-based moment method for dilute fluid-particle flows. J. Comput. Phys., 227(4):25142539, 2008.Google Scholar
[8] Doisneau, F.. Eulerian modeling and simulation of polydisperse moderately dense coalescing spray flows with nanometric-to-inertial droplets : application to Solid Rocket Motors. Phd thesis, Ecole Centrale Paris, 2013. Available online at https://tel.archives-ouvertes.fr/tel-01009896/.Google Scholar
[9] Doisneau, F., Laurent, F., Murrone, A., Dupays, J., and Massot, M.. Eulerian multi-fluid models for the simulation of dynamics and coalescence of particles in solid propellant combustion. J. Comput. Phys., 234(0):230262, 2013.Google Scholar
[10] Dufour, G.. Modélisation multi-fluide eulérienne pour les écoulements diphasiques à inclusions dispersées. PhD thesis, Université Paul Sabatier Toulouse III, 2005.Google Scholar
[11] Dukowicz, J. K.. A particle-fluid numerical model for liquid sprays. J. Comput. Phys., 35(2):229253, 1980.Google Scholar
[12] Dupif, V.. Modélisation et simulation de l’écoulement diphasique dans les moteurs à propergol solide par une approche eulérienne polydispersée en taille et en vitesse. PhD thesis, Ecole Centrale Paris, France, 2017.Google Scholar
[13] Dupif, V., Lagarde, J., Boileau, M., Laurent, F., and Massot, M.. Two-size moment eulerian multi-fluid method describing the statistical trajectory crossing: Modeling and numerical scheme. in preparation, 2015.Google Scholar
[14] Emre, O., Fox, R. O., Massot, M., Chaisemartin, S. De, Jay, S., and Laurent, F.. Eulerian modeling of a polydisperse evaporating spray under realistic internal-combustion-engine conditions. Flow, Turbulence and Combustion, 93(4):689722, 2014.CrossRefGoogle Scholar
[15] Gelbard, F., Tambour, Y., and Seinfeld, J. H.. Sectional representations for simulating aerosol dynamics. Journal of Colloid and Interface Science, 76(2):541556, 1980.Google Scholar
[16] Gottlieb, S., Shu, C.-W., and Tadmor, E.. Strong stability-preserving high-order time discretization methods. SIAM review, 43(1):89112, 2001.Google Scholar
[17] Hylkema, J.. Modélisation cinétique et simulation numérique d’un brouillard dense de gouttelettes. Application aux propulseurs à poudre. PhD thesis, ENSAE, 1999.Google Scholar
[18] Hylkema, J. and Villedieu, P.. A random particle method to simulate coalescence phenomena in dense liquid sprays. In Lecture Notes in Physics, volume 515, pages 488493, Arcachon, France, 1998. Proc. 16th Int. Conf. on Num. Meth. in Fluid Dyn.Google Scholar
[19] Kah, D., Emre, O., Tran, Q. H., De Chaisemartin, S., Jay, S., Laurent, F., and Massot, M.. High order moment method for polydisperse evaporating sprays with mesh movement: application to internal combustion engines. International Journal of Multiphase Flow, 71:3865, 2015.Google Scholar
[20] Kah, D., Laurent, F., Fréret, L., De Chaisemartin, S., Fox, R. O., Reveillon, J., and Massot, M.. Eulerian quadrature-based moment models for polydisperse evaporating sprays. Flow, Turbulence and Combustion, 85(3-4):649676, 2010. (Special Issue Dedicated to Pope, Stephen B.).Google Scholar
[21] Kah, D., Laurent, F., Massot, M., and Jay, S.. A high order moment method simulating evaporation and advection of a polydisperse liquid spray. J. Comput. Phys., 231(2):394422, 2012.Google Scholar
[22] Laurent, F.. Analyse numérique d’une méthode multi-fluide Eulérienne pour la description de sprays qui s’évaporent. C. R. Math. Acad. Sci. Paris, 334(5):417422, 2002.Google Scholar
[23] Laurent, F.. Numerical analysis of Eulerian multi-fluid models in the context of kinetic formulations for dilute evaporating sprays. M2AN Math. Model. Numer. Anal., 40(3):431468, 2006.Google Scholar
[24] Laurent, F. and Massot, M.. Multi-fluid modeling of laminar poly-dispersed spray flames: origin, assumptions and comparison of the sectional and sampling methods. Combust. Theory and Modelling, 5:537572, 2001.Google Scholar
[25] Laurent, F., Massot, M., and Villedieu, P.. Eulerian multi-fluid modeling for the numerical simulation of coalescence in polydisperse dense liquid sprays. J. Comput. Phys., 194:505543, 2004.Google Scholar
[26] Marchisio, D. L. and Fox, R. O.. Solution of population balance equations using the direct quadrature method of moments. Journal of Aerosol Science, 36:4373, 2005.Google Scholar
[27] Massot, M., Laurent, F., Kah, D., and De, S. Chaisemartin. A robust moment method for evaluation of the disappearance rate of evaporating sprays. SIAM J. Appl .Math., 70(8):32033234, 2010.Google Scholar
[28] McGraw, R.. Description of aerosol dynamics by the quadrature method of moments. Aerosol Science and Technology, 27:255265, 1997.Google Scholar
[29] Mead, L. R. and Papanicolaou, N.. Maximum entropy in the problem of moments. J. Math. Phys., 25(8):24042417, 1984.Google Scholar
[30] Ridders, C.. A new algorithm for computing a single root of a real continuous function. Circuits and Systems, IEEE Transactions on, 26(11):979980, 1979.Google Scholar
[31] Sabat, M.. Modèles Eulériens et méthodes numériques pour la description des sprays polydispersés turbulents. PhD thesis, Ecole Centrale Paris, France, 2016.Google Scholar
[32] Sabat, M., Larat, A., Vié, A., and Massot, M.. On the development of high order realizable schemes for the Eulerian simulation of disperse phase flows: A convex-state preserving Discontinuous Galerkin method. Journal of Computational Multiphase Flows, 6(3):247270, 2014.Google Scholar
[33] Sibra, A.. Modélisation et étude de l’évaporation et de la combustion de gouttes dans les moteurs à propergol solide par une approche eulérienne Multi-Fluide. PhD thesis, Ecole Centrale Paris, France, 2015. Available online at https://tel.archives-ouvertes.fr/tel-01260314 Google Scholar
[34] Sibra, A., Dupays, J., Murrone, A., Laurent, F., and Massot, M.. Simulation of reactive polydisperse sprays strongly coupled to unsteady flows in solid rocket motors: Efficient strategy using eulerian multi-fluid methods. submitted, available online at https://hal.archives-ouvertes.fr/hal-01063816, 2014.Google Scholar
[35] Tambour, Y.. A Lagrangian sectionnal approach for simulating droplet size distribution of vaporizing fuel in a turbulent jet. Combustion and Flame, 15:19071925, 1985.Google Scholar
[36] Le Touze, C., Murrone, A., and Guillard, H.. Multislope {MUSCL} method for general unstructured meshes. J. Comput. Phys., 284(0):389418, 2015.Google Scholar
[37] Vié, A., Doisneau, F., and Massot, M.. On the Anisotropic Gaussian closure for the prediction of inertial-particle laden flows. Commun. Comput. Phys., 17(1):146, 2015.Google Scholar
[38] Vié, A., Laurent, F., and Massot, M.. Size-velocity correlations in hybrid high order moment/multi-fluid methods for polydisperse evaporating sprays: Modeling and numerical issues. J. Comput. Phys., 237(0):177210, 2013.Google Scholar
[39] Williams, F. A.. Spray combustion and atomization. Phys. Fluids, 1:541545, 1958.Google Scholar
[40] Yuan, C. and Fox, R. O.. Conditional quadrature method of moments for kinetic equations. J. Comput. Phys., 230(22):82168246, 2011.Google Scholar
[41] Yuan, C., Laurent, F., and Fox, R. O.. An extended quadrature method of moments for population balance equations. Journal of Aerosol Science, 51(0):123, 2012.CrossRefGoogle Scholar