Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T21:32:26.110Z Has data issue: false hasContentIssue false

Cyclotomic analogues of finite multiple zeta values

Published online by Cambridge University Press:  06 November 2018

Henrik Bachmann
Affiliation:
Graduate School of Mathematics, Nagoya University, Nagoya, Aichi 464-8602, Japan email henrik.bachmann@math.nagoya-u.ac.jp
Yoshihiro Takeyama
Affiliation:
Department of Mathematics, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan email takeyama@math.tsukuba.ac.jp
Koji Tasaka
Affiliation:
Department of Information Science and Technology, Aichi Prefectural University, Nagakute-city, Aichi 480-1198, Japan email tasaka@ist.aichi-pu.ac.jp

Abstract

We study the values of finite multiple harmonic $q$-series at a primitive root of unity and show that these specialize to the finite multiple zeta value (FMZV) and the symmetric multiple zeta value (SMZV) through an algebraic and analytic operation, respectively. Further, we prove the duality formula for these values, as an example of linear relations, which induce those among FMZVs and SMZVs simultaneously. This gives evidence towards a conjecture of Kaneko and Zagier relating FMZVs and SMZVs. Motivated by the above results, we define cyclotomic analogues of FMZVs, which conjecturally generate a vector space of the same dimension as that spanned by the finite multiple harmonic $q$-series at a primitive root of unity of sufficiently large degree.

Type
Research Article
Copyright
© The Authors 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bradley, D. M., Multiple q-zeta values , J. Algebra 283 (2005), 752798.Google Scholar
Bradley, D. M., Duality for finite multiple harmonic q-series , Discrete Math. 300 (2005), 4456.Google Scholar
Carlitz, L., A degenerate Staudt–Clausen theorem , Arch. Math. (Basel) 7 (1956), 2833.Google Scholar
Hoffman, M. E., The algebra of multiple harmonic series , J. Algebra 194 (1997), 477495.Google Scholar
Hoffman, M. E., Quasi-symmetric functions and mod p multiple harmonic sums , Kyushu J. Math. 69 (2015), 345366.Google Scholar
Ihara, K., Kajikawa, J., Ohno, Y. and Okuda, J., Multiple zeta values vs. multiple zeta-star values , J. Algebra 332 (2011), 187208.Google Scholar
Ihara, K., Kaneko, M. and Zagier, D., Derivation and double shuffle relations for multiple zeta values , Compos. Math. 142 (2006), 307338.Google Scholar
Jarossay, D., Double mélange des multizêtas finis et multizêtas symétrisés , C. R. Math. 352 (2014), 767771.Google Scholar
Kawashima, G., A generalization of the duality for finite multiple harmonic q-series , Ramanujan J. 21 (2010), 335347.Google Scholar
Kontsevich, M., Holonomic D-modules and positive characteristic , Jpn. J. Math. 4 (2009), 125.Google Scholar
Murahara, H., A note on finite real multiple zeta values , Kyushu J. Math. 70 (2016), 197204.Google Scholar
Ohno, Y. and Okuda, J., On the sum formula for the q-analogue of non-strict multiple zeta values , Proc. Amer. Math. Soc. 135 (2007), 30293037.Google Scholar
Ohno, Y., Okuda, J. and Zudilin, W., Cyclic q-MZSV sum , J. Number Theory 132 (2012), 144155.Google Scholar
Okuda, J. and Takeyama, Y., On relations for the multiple q-zeta values , Ramanujan J. 14 (2007), 379387.Google Scholar
Saito, S. and Wakabayashi, N., Sum formula for finite multiple zeta values , J. Math. Soc. Japan 67 (2015), 10691076.Google Scholar
Steffensen, J. F., Interpolation, second edition (Chelsea, New York, 1950).Google Scholar
Takeyama, Y., A q-analogue of non-strict multiple zeta values and basic hypergeometric series , Proc. Amer. Math. Soc. 137 (2009), 29973002.Google Scholar
Takeyama, Y., Quadratic relations for a q-analogue of multiple zeta values , Ramanujan J. 27 (2012), 1528.Google Scholar
Takeyama, Y., The algebra of a q-analogue of multiple harmonic series , SIGMA Symmetry Integrability Geom. Methods Appl. 9 (2013), 061, 1–15.Google Scholar
Washington, L., Introduction to cyclotomic fields, Graduate Texts in Mathematics, vol. 83 (Springer, New York, 1997).Google Scholar
Zhao, J., q-multiple zeta functions and q-multiple polylogarithms , Ramanujan J. 14 (2007), 189221.Google Scholar