Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T08:59:17.407Z Has data issue: false hasContentIssue false

Derived categories and rationality of conic bundles

Published online by Cambridge University Press:  07 October 2013

Marcello Bernardara
Affiliation:
Univeristät Duisburg–Essen, Fakultät für Mathematik. Universitätstr. 2, 45117 Essen, Germany email mbernard@math.univ-toulouse.fr Institut de Mathématiques de Toulouse (IMT), 118 route de Narbonne, Université Paul Sabatier, F-31062 Toulouse Cedex 9, France email mbernard@math.univ-toulouse.fr
Michele Bolognesi
Affiliation:
IRMAR, Université de Rennes 1, 263 Av. Général Leclerc, Bat. 22, 35042 Rennes Cedex, France email michele.bolognesi@univ-rennes1.fr

Abstract

We show that a standard conic bundle over a minimal rational surface is rational and its Jacobian splits as the direct sum of Jacobians of curves if and only if its derived category admits a semiorthogonal decomposition by exceptional objects and the derived categories of those curves. Moreover, such a decomposition gives the splitting of the intermediate Jacobian also when the surface is not minimal.

Type
Research Article
Copyright
© The Author(s) 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

d’Almeida, J., Gruson, L. and Perrin, N., Courbes de genre 5 munies d’une involution sans point fixe, J. Lond. Math. Soc. (2) 72 (2005), 545570.CrossRefGoogle Scholar
del Angel, P. L. and Müller-Stach, S., Motives of uniruled 3-folds, Compositio Math. 112 (1998), 116.Google Scholar
Artin, M. and Mumford, D., Some elementary examples of unirational varieties which are not rational, Proc. Lond. Math. Soc. (3) 25 (1972), 7595.Google Scholar
Beauville, A., Prym varieties and Schottky problem, Invent. Math. 41 (1977), 149196.Google Scholar
Beauville, A., Variétés de Prym et jacobiennes intermédiaires, Ann. Sci. Éc. Norm. Supér. (4) 10 (1977), 309391.Google Scholar
Beauville, A., Determinantal hypersurfaces, Michigan Math. J. 48 (2000), 3964.Google Scholar
Beilinson, A. A., The derived category of coherent sheaves on ${ \mathbb{P} }^{n} $, Selecta Math. Sov. 34 (1984), 233237.Google Scholar
Beltrametti, M. and Francia, P., Conic bundles on non-rational surfaces, in Algebraic geometry—open problems, Ravello 1982, Lecture Notes in Mathematics, vol. 997 (Springer, 1983), 3489.Google Scholar
Beltrametti, M., On the Chow group and the intermediate Jacobian of a conic bundle, Ann. Mat. Pura Appl. (4) 41 (1985), 331351.Google Scholar
Bernardara, M., Fourier–Mukai transforms of curves and principal polarizations, C. R. Math. Acad. Sci. Paris 345 (2007), 203208.Google Scholar
Bernardara, M., Macrí, E., Mehrotra, S. and Stellari, P., A categorical invariant for cubic threefolds, Adv. Math. 229 (2012), 770803.CrossRefGoogle Scholar
Bolognesi, M., A conic bundle degenerating on the Kummer surface, Math. Z. 261 (2009), 149168.Google Scholar
Bondal, A., Representations of associative algebras and coherent sheaves, Math. USSR, Izv. 34 (1990), 2342.CrossRefGoogle Scholar
Bondal, A. and Kapranov, M., Representable functors, Serre functors, and reconstructions, Math. USSR, Izv. 35 (1990), 519541.Google Scholar
Bondal, A. and Orlov, D., Semiorthogonal decomposition for algebraic varieties, Preprint (1995), arXiv:alg-geom/9506012.Google Scholar
Casnati, G., Covers of algebraic varieties III: the discriminant of a cover of degree 4 and the trigonal construction, Trans. Amer. Math. Soc. 350 (1998), 13591378.Google Scholar
Casnati, G. and Ekedahl, T., Covers of algebraic varieties. I. A general structure theorem, covers of degree $3, 4$ and Enriques surfaces, J. Algebraic Geom. 5 (1996), 439460.Google Scholar
Clemens, C. H. and Griffiths, P. A., The intermedite Jacobian of the cubic threefold, Ann. of Math. (2) 95 (1972), 281356.Google Scholar
Donagi, R., The fibers of the Prym map, in Curves, Jacobians, and Abelian varieties, Proc. AMS-IMS-SIAM Jt. Summer Res. Conf. Schottky Probl., Contemp. Math. 136 (1992), 55125.Google Scholar
van Geemen, B., Some remarks on Brauer groups of $K 3$ surfaces, Adv. Math. 197 (2005), 222247.Google Scholar
Harris, J., Algebraic geometry. A first course, Graduate Texts in Mathematics, vol. 133 (Spinger, Berlin, 1992).Google Scholar
Huybrechts, D., Fourier–Mukai transforms in algebraic geometry, Oxford Mathematical Monographs (The Clarendon Press, Oxford University Press, Oxford, 2006).Google Scholar
Iliev, A. and Markushevich, D., The Abel–Jacobi map for cubic threefold and periods of Fano threefolds of degree 14, Doc. Math. 5 (2000), 2347.Google Scholar
Iskovskikh, V. A., Congruences of conics in ${P}^{3} $ (Russian–English summary), Vestnik Moskov. Univ. Ser. I Mat. Mekh. 121 (1982), 5762 (English translation in Moscow Univ. Math. Bull. 37 (1982), 67–73).Google Scholar
Iskovskikh, V. A., On the rationality problem for conic bundles, Duke Math. J. 54 (1987), 271294.Google Scholar
Kapranov, M. M., On the derived categories of coherent sheaves on some homogeneous spaces, Invent. Math. 92 (1988), 479508.CrossRefGoogle Scholar
Katzarkov, L., Generalized homological mirror symmetry, superschemes and nonrationality, in Special metrics and supersymmetry. Lectures given in the workshop on geometry and physics: special metrics and supersymmetry, Bilbao, 29–31 May 2008, AIP Conference Proceedings, vol. 1093 (American Institute of Physics, Melville, NY, 2009), 92131.Google Scholar
Katzarkov, L., Generalized homological mirror symmetry and rationality questions, in Cohomological and geometric approaches to rationality problems, Progress in Mathematics, vol. 282 (Birkhäuser, Boston, MA, 2010), 163208.Google Scholar
Kuznetsov, A., Derived categories of cubic and ${V}_{14} $ threefolds, Proc. Steklov Inst. Math. 246 (2004), 171194 (English translation of Tr. Mat. Inst. Steklova 246 (2004), 183–207).Google Scholar
Kuznetsov, A., Derived categories of quadric fibrations and intersections of quadrics, Adv. Math. 218 (2008), 13401369.Google Scholar
Kuznetsov, A., Derived categories of Fano threefolds, Proc. Steklov Inst. Math. 264 (2009), 110122.Google Scholar
Kuznetsov, A., Derived categories of cubic fourfolds, in Cohomological and geometric approaches to rationality problems, Progress in Mathematics, vol. 282 (Birkhäuser, Boston, MA, 2010), 163208.Google Scholar
Merkur’ev, A. S., On the norm residue symbol of degree 2, Dokl. Akad. Nauk SSSR 261 (1981), 542547 (English translation in Soviet Math. Doklady 24 (1981), 546–551).Google Scholar
Mumford, D., Prym varieties I, in Contribution to analysis (Academic Press, New York, NY, 1974).Google Scholar
Murre, J. P., On the motive of an algebraic surface, J. Reine Angew. Math. 409 (1990), 190204.Google Scholar
Nagel, J. and Saito, M., Relative Chow–Künneth decomposition for conic bundles and Prym varieties, Int. Math. Res. Not. IMRN (2009), 29783001.Google Scholar
Orlov, D. O., Projective bundles, monoidal transformations and derived categories of coherent sheaves, Izv. Math. 41 (1993), 133141.Google Scholar
Orlov, D. O., Derived categories of coherent sheaves and equivalences between them, Russian Math. Surveys 58 (2003), 511591.Google Scholar
Orlov, D. O., Derived categories of coherent sheaves and motives, Russian Math. Surveys 60 (2005), 12421244.Google Scholar
Panin, I. A., Rationality of bundles of conics with degenerate curve of degree five and even theta-characteristic, J. Sov. Math. 24 (1984), 449452 (Russian original in Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova 103 (1980), 100–106).Google Scholar
Recillas, S., Jacobians of curves with ${ g}_{4}^{1} $’s are the Pryms of trigonal curves, Bol. Soc. Mat. Mexicana (2) 19 (1974), 913.Google Scholar
Sarkisov, V. G., Birational automorphisms of conic bundles, Math. USSR Izv. 17 (1981), 177202.CrossRefGoogle Scholar
Sarkisov, V. G., On conic bundle structures, Math. USSR Izv. 20 (1982), 355390.Google Scholar
Scholl, A. J., Classical motives, in Motives, Seattle, WA, 20 July–2 August 1991, Proceedings of Symposia in Pure Mathematics, vol. 55.1 (Part 1) (American Mathematical Society, Providence, RI, 1994), 163187.Google Scholar
Shokurov, V. V., Prym varieties: theory and applications, Math. USSR Izv. 23 (1984), 83147.Google Scholar
Verra, A., The fibre of the Prym map in genus three, Math. Ann. 276 (1987), 433448.Google Scholar