No CrossRef data available.
Published online by Cambridge University Press: 01 December 2022
Celebrated theorems of Roth and of Matoušek and Spencer together show that the discrepancy of arithmetic progressions in the first $n$ positive integers is $\Theta (n^{1/4})$. We study the analogous problem in the $\mathbb {Z}_n$ setting. We asymptotically determine the logarithm of the discrepancy of arithmetic progressions in $\mathbb {Z}_n$ for all positive integer $n$. We further determine up to a constant factor the discrepancy of arithmetic progressions in $\mathbb {Z}_n$ for many $n$. For example, if $n=p^k$ is a prime power, then the discrepancy of arithmetic progressions in $\mathbb {Z}_n$ is $\Theta (n^{1/3+r_k/(6k)})$, where $r_k \in \{0,1,2\}$ is the remainder when $k$ is divided by $3$. This solves a problem of Hebbinghaus and Srivastav.
Fox is supported by a Packard Fellowship and by NSF Awards DMS-1800053 and DMS-2154169. Xu is supported by the Cuthbert C. Hurd Graduate Fellowship in the Mathematical Sciences, Stanford. Zhou is supported by NSF GRFP Grant DGE-1656518.