Published online by Cambridge University Press: 14 August 2017
Let $A\rightarrow B$ be a morphism of Artin local rings with the same embedding dimension. We prove that any $A$ -flat $B$ -module is $B$ -flat. This freeness criterion was conjectured by de Smit in 1997 and improves Diamond’s criterion [The Taylor–Wiles construction and multiplicity one, Invent. Math. 128 (1997), 379–391, Theorem 2.1]. We also prove that if there is a nonzero $A$ -flat $B$ -module, then $A\rightarrow B$ is flat and is a relative complete intersection. Then we explain how this result allows one to simplify Wiles’s proof of Fermat’s last theorem: we do not need the so-called ‘Taylor–Wiles systems’ any more.