Published online by Cambridge University Press: 18 October 2018
Let $\unicode[STIX]{x1D70F}(\cdot )$ be the classical Ramanujan $\unicode[STIX]{x1D70F}$-function and let $k$ be a positive integer such that $\unicode[STIX]{x1D70F}(n)\neq 0$ for $1\leqslant n\leqslant k/2$. (This is known to be true for $k<10^{23}$, and, conjecturally, for all $k$.) Further, let $\unicode[STIX]{x1D70E}$ be a permutation of the set $\{1,\ldots ,k\}$. We show that there exist infinitely many positive integers $m$ such that $|\unicode[STIX]{x1D70F}(m+\unicode[STIX]{x1D70E}(1))|<|\unicode[STIX]{x1D70F}(m+\unicode[STIX]{x1D70E}(2))|<\cdots <|\unicode[STIX]{x1D70F}(m+\unicode[STIX]{x1D70E}(k))|$. We also obtain a similar result for Hecke eigenvalues of primitive forms of square-free level.