Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T12:49:42.541Z Has data issue: false hasContentIssue false

Super-rigid affine Fano varieties

Published online by Cambridge University Press:  17 October 2018

Ivan Cheltsov
Affiliation:
School of Mathematics, The University of Edinburgh, James Clerk Maxwell Building, The King’s Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK Laboratory of Algebraic Geometry, National Research University Higher School of Economics, 6 Usacheva street, Moscow, 117312, Russia email I.Cheltsov@ed.ac.uk
Adrien Dubouloz
Affiliation:
IMB UMR5584, CNRS, Université Bourgogne Franche-Comté F-21000 Dijon, France email adrien.dubouloz@u-bourgogne.fr
Jihun Park
Affiliation:
Center for Geometry and Physics, Institute for Basic Science (IBS), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Korea Department of Mathematics, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Korea email wlog@postech.ac.kr

Abstract

We study a wide class of affine varieties, which we call affine Fano varieties. By analogy with birationally super-rigid Fano varieties, we define super-rigidity for affine Fano varieties, and provide many examples and non-examples of super-rigid affine Fano varieties.

Type
Research Article
Copyright
© The Authors 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blanc, J. and Dubouloz, A., Automorphisms of A1 -fibered surfaces , Trans. Amer. Math. Soc. 363 (2011), 58875924.Google Scholar
Blanc, J. and Dubouloz, A., Affine surfaces with a huge group of automorphisms , Int. Math. Res. Not. IMRN 2015 (2015), 422459.Google Scholar
Cassels, J. and Guy, M., On the Hasse principle for cubic surfaces , Mathematika 13 (1966), 111120.Google Scholar
Cheltsov, I., Birationally rigid Fano varieties , Russian Math. Surveys 60 (2005), 875965.Google Scholar
Cheltsov, I., Log canonical thresholds of del Pezzo surfaces , Geom. Funct. Anal. 11 (2008), 11181144.Google Scholar
Cheltsov, I., Fano varieties with many selfmaps , Adv. Math. 217 (2008), 97124.Google Scholar
Cheltsov, I., Log canonical thresholds of Fano threefold hypersurfaces , Izv. Math. 73 (2009), 727795.Google Scholar
Cheltsov, I. and Kosta, D., Computing 𝛼-invariants of singular del Pezzo surfaces , J. Geom. Anal. 24 (2014), 798842.Google Scholar
Cheltsov, I. and Park, J., Birationally rigid Fano threefold hypersurfaces , Mem. Amer. Math. Soc. 246 (2017).Google Scholar
Cheltsov, I., Park, J. and Shramov, C., Exceptional del Pezzo hypersurfaces , J. Geom. Anal. 20 (2010), 787816.Google Scholar
Cheltsov, I., Park, J. and Won, J., Affine cones over smooth cubic surfaces , J. Eur. Math. Soc. 18 (2016), 15371564.Google Scholar
Cheltsov, I., Park, J. and Won, J., Cylinders in singular del Pezzo surfaces , Compos. Math. 152 (2016), 11981224.Google Scholar
Cheltsov, I., Przyjalkowski, V. and Shramov, C., Which quartic double solids are rational?, J. Algebraic Geom., to appear. Preprint (2015), arXiv:1508.07277.Google Scholar
Cheltsov, I. and Shramov, C., On exceptional quotient singularities , Geom. Topol. 15 (2011), 18431882.Google Scholar
Cheltsov, I. and Shramov, C., Del Pezzo zoo , Exp. Math. 22 (2013), 313326.Google Scholar
Cheltsov, I. and Shramov, C., Weakly-exceptional singularities in higher dimensions , J. Reine Angew. Math. 689 (2014), 201241.Google Scholar
Clemens, C. and Griffiths, P., The intermediate Jacobian of the cubic threefold , Ann. of Math. (2) 95 (1972), 281356.Google Scholar
Corti, A., Singularities of linear systems and 3-fold birational geometry , in Explicit birational geometry of 3-folds, London Mathematical Society Lecture Note Series, vol. 281 (Cambridge University Press, 2000), 259312.Google Scholar
Corti, A., Pukhlikov, A. and Reid, M., Fano 3-fold hypersurfaces , in Explicit birational geometry of 3-folds, London Mathematical Society Lecture Note Series, vol. 281 (Cambridge University Press, 2000), 175258.Google Scholar
Dubouloz, A. and Kishimoto, T., Log-uniruled affine varieties without cylinder-like open subsets , Bull. Soc. Math. France 143 (2015), 383401.Google Scholar
Dubouloz, A. and Kishimoto, T., Cylinder in del Pezzo fibrations , Israel J. Math. 225 (2018), 797815.Google Scholar
Dubouloz, A. and Lamy, S., Automorphisms of open surfaces with irreducible boundary , Osaka J. Math. 52 (2015), 747791.Google Scholar
de Fernex, T., Birationally rigid hypersurfaces , Invent. Math. 192 (2013), 533566.Google Scholar
Iano-Fletcher, A., Working with weighted complete intersections , in Explicit birational geometry of 3-folds, London Mathematical Society Lecture Note Series, vol. 281 (Cambridge University Press, 2000), 101173.Google Scholar
Gizatullin, M., Affine surfaces that can be augmented by a nonsingular rational curve , Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970), 778802.Google Scholar
Gizatullin, M. and Danilov, V., Automorphisms of affine surfaces. I , Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), 523565.Google Scholar
Gizatullin, M. and Danilov, V., Automorphisms of affine surfaces. II , Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), 54103.Google Scholar
Grinenko, M., On a double cone over a Veronese surface , Izv. Math. 67 (2003), 421438.Google Scholar
Grinenko, M., Mori structures on a Fano threefold of index 2 and degree 1 , Proc. Steklov Inst. Math. 246 (2004), 103128.Google Scholar
Iskovskih, V. and Manin, Yu., Three-dimensional quartics and counterexamples to the Lüroth problem , Mat. Sb. 86 (1971), 140166.Google Scholar
Johnson, J. and Kollár, J., Fano hypersurfaces in weighted projective 4-spaces , Exp. Math. 10 (2001), 151158.Google Scholar
Keel, S. and McKernan, J., Rational curves on quasi-projective surfaces , Mem. Amer. Math. Soc. 140 (1999).Google Scholar
Kishimoto, T., Prokhorov, Yu. and Zaidenberg, M., Affine cones over Fano threefolds and additive group actions, Preprint (2011), arXiv:1106.1312v1.1 Google Scholar
Kishimoto, T., Prokhorov, Yu. and Zaidenberg, M., G a -actions on affine cones , Transform. Groups 18 (2013), 11371153.Google Scholar
Kollár, J., Singularities of pairs , in Algebraic geometry (Santa Cruz, 1995) Part 1, Proceedings of Symposia in Pure Mathematics, vol. 62 (American Mathematical Society, 1997), 221287.Google Scholar
Miyanishi, M. and Sugie, T., Homology planes with quotient singularities , J. Math. Kyoto Univ. 31 (1991), 755788.Google Scholar
Prokhorov, Y. and Zaidenberg, M., Examples of cylindrical Fano fourfolds , Eur. J. Math. 2 (2016), 262282.Google Scholar
Pukhlikov, A., Birational automorphisms of Fano hypersurfaces , Invent. Math. 134 (1998), 401426.Google Scholar
Pukhlikov, A., Birational geometry of Fano direct products , Izv. Math. 69 (2005), 12251255.Google Scholar
Pukhlikov, A., Birationally rigid varieties, Mathematical Surveys and Monographs, vol. 190 (American Mathematical Society, Providence, RI, 2013).Google Scholar
Pukhlikov, A., Automorphisms of certain affine complements in the projective space , Sb. Math. 209 (2018), 276289.Google Scholar
Rosenlicht, M., Some basic theorems on algebraic groups , Amer. J. Math. 78 (1956), 401443.Google Scholar
Russell, P., On affine-ruled rational surfaces , Math. Ann. 255 (1981), 287302.Google Scholar
Sakovics, D., Weakly-exceptional quotient singularities , Cent. Eur. J. Math. 10 (2012), 885902.Google Scholar
Sakovics, D., Five-dimensional weakly exceptional quotient singularities , Proc. Edinb. Math. Soc. (2) 57 (2014), 269279.Google Scholar
Shokurov, V., Three-fold log flips , Izv. Math. 40 (1993), 95202.Google Scholar
Szurek, M. and Wiśniewski, J., Fano bundles of rank 2 on surfaces , Compos. Math. 76 (1990), 295305.Google Scholar
Tian, G., On Käahler–Einstein metrics on certain Kähler manifolds with C1(M) > 0 , Invent. Math. 89 (1987), 225246.+0+,+Invent.+Math.+89+(1987),+225–246.>Google Scholar
Voisin, C., Sur la jacobienne intermédiaire du double solide d’indice deux , Duke Math. J. 57 (1988), 629646.Google Scholar