Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T22:40:15.707Z Has data issue: false hasContentIssue false

Cell 2-representations of finitary 2-categories

Published online by Cambridge University Press:  29 July 2011

Volodymyr Mazorchuk
Affiliation:
Department of Mathematics, Uppsala University, Box 480, SE-751 06, Uppsala, Sweden (email: mazor@math.uu.se)
Vanessa Miemietz
Affiliation:
School of Mathematics, University of East Anglia, Norwich, NR4 7TJ, UK (email: v.miemietz@uea.ac.uk)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study 2-representations of finitary 2-categories with involution and adjunctions by functors on module categories over finite-dimensional algebras. In particular, we define, construct and describe in detail (right) cell 2-representations inspired by Kazhdan–Lusztig cell modules for Hecke algebras. Under some natural assumptions we show that cell 2-representations are strongly simple and do not depend on the choice of a right cell inside a two-sided cell. This reproves and extends the uniqueness result on categorification of Kazhdan–Lusztig cell modules for Hecke algebras of type A from [V. Mazorchuk and C. Stroppel, Categorification of (induced) cell modules and the rough structure of generalised Verma modules, Adv. Math. 219 (2008), 1363–1426].

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2011

References

[AM11]Agerholm, T. and Mazorchuk, V., On selfadjoint functors satisfying polynomial relations, J. Algebra 330 (2011), 448467.CrossRefGoogle Scholar
[Aus74]Auslander, M., Representation theory of Artin algebras, I, II, Comm. Algebra 1 (1974), 177268; 269–310.CrossRefGoogle Scholar
[BG80]Bernstein, J. and Gelfand, S., Tensor products of finite- and infinite-dimensional representations of semisimple Lie algebras, Compositio Math. 41 (1980), 245285.Google Scholar
[Bez04]Bezrukavnikov, R., On tensor categories attached to cells in affine Weyl groups, in Representation theory of algebraic groups and quantum groups, Advanced Studies in Pure Mathematics, vol. 40 (Mathematical Society of Japan, Tokyo, 2004), 6990.CrossRefGoogle Scholar
[CR08]Chuang, J. and Rouquier, R., Derived equivalences for symmetric groups and -categorification, Ann. of Math. (2) 167 (2008), 245298.CrossRefGoogle Scholar
[Cra95]Crane, L., Clock and category: is quantum gravity algebraic?, J. Math. Phys. 36 (1995), 61806193.CrossRefGoogle Scholar
[CF94]Crane, L. and Frenkel, I., Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases. Topology and physics, J. Math. Phys. 35 (1994), 51365154.CrossRefGoogle Scholar
[EGNO]Etingof, P., Gelaki, S., Nikshych, D. and Ostrik, V., Tensor categories,http://www-math.mit.edu/∼etingof/tenscat.pdf.Google Scholar
[EO04]Etingof, P. and Ostrik, V., Finite tensor categories, Mosc. Math. J. 4 (2004), 627654, 782–783.CrossRefGoogle Scholar
[Fre66]Freyd, P., Representations in abelian categories, in Proc. Conf. Categorical Algebra (Springer, New York, 1966), 95120.CrossRefGoogle Scholar
[GL96]Graham, J. and Lehrer, G., Cellular algebras, Invent. Math. 123 (1996), 134.CrossRefGoogle Scholar
[Hum08]Humphreys, J., Representations of semisimple Lie algebras in the BGG category 𝒪, Graduate Studies in Mathematics, vol. 94 (American Mathematical Society, Providence, RI, 2008).CrossRefGoogle Scholar
[KL79]Kazhdan, D. and Lusztig, G., Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165184.CrossRefGoogle Scholar
[Kho05]Khomenko, O., Categories with projective functors, Proc. Lond. Math. Soc. (3) 90 (2005), 711737.CrossRefGoogle Scholar
[KM05]Khomenko, O. and Mazorchuk, V., On Arkhipov’s and Enright’s functors, Math. Z. 249 (2005), 357386.CrossRefGoogle Scholar
[Kho02]Khovanov, M., A functor-valued invariant of tangles, Algebr. Geom. Topol. 2 (2002), 665741.CrossRefGoogle Scholar
[KL10]Khovanov, M. and Lauda, A., A categorification of quantum , Quantum Topol. 1 (2010), 192.CrossRefGoogle Scholar
[KMS08]Khovanov, M., Mazorchuk, V. and Stroppel, C., A categorification of integral Specht modules, Proc. Amer. Math. Soc. 136 (2008), 11631169.CrossRefGoogle Scholar
[Lei98]Leinster, T., Basic bicategories, Preprint, arXiv:math/9810017.Google Scholar
[Lus85]Lusztig, G., Cells in affine Weyl groups, in Algebraic groups and related topics (Kyoto/Nagoya, 1983), Advanced Studies in Pure Mathematics, vol. 6 (North-Holland, Amsterdam, 1985), 255287.CrossRefGoogle Scholar
[Maz10]Mazorchuk, V., Lectures on algebraic categorification, Preprint, arXiv:1011.0144.Google Scholar
[MS08]Mazorchuk, V. and Stroppel, C., Categorification of (induced) cell modules and the rough structure of generalised Verma modules, Adv. Math. 219 (2008), 13631426.CrossRefGoogle Scholar
[Neu06]Neunhöffer, M., Kazhdan–Lusztig basis, Wedderburn decomposition, and Lusztig’s homomorphism for Iwahori–Hecke algebras, J. Algebra 303 (2006), 430446.CrossRefGoogle Scholar
[Ost97]Ostrik, V., Tensor ideals in the category of tilting modules, Transform. Groups 2 (1997), 279287.CrossRefGoogle Scholar
[Rou04]Rouquier, R., Categorification of the braid groups, Preprint, arXiv:math/0409593.Google Scholar
[Rou08]Rouquier, R., 2-Kac–Moody algebras, Preprint, arXiv:0812.5023.Google Scholar
[Sag01]Sagan, B., The symmetric group. Representations, combinatorial algorithms, and symmetric functions, Graduate Texts in Mathematics, vol. 203, second edition (Springer, New York, 2001).Google Scholar
[Str05]Stroppel, C., Categorification of the Temperley–Lieb category, tangles, and cobordisms via projective functors, Duke Math. J. 126 (2005), 547596.CrossRefGoogle Scholar
[Wil10]Williamson, G., Singular Soergel bimodules, Preprint, arXiv:1010.1283.Google Scholar