Let $G$ be a connected semisimple algebraic group defined over a number field $k$. Consider the Lie group $\textbf {G}=G(k\otimes \mathbb {R})$ and let us denote by $\boldsymbol {\theta }$ a Cartan involution. A $k$-automorphism $\phi$ of $G$ is said to be of Cartan type if the automorphism $\Phi$ induced by $\phi$ on $\textbf {G}$ can be written as $\Phi =\mathrm {Int}(x)\circ \boldsymbol {\theta }$ where $\mathrm {Int}(x)$ is the inner automorphism defined by some $x\in \textbf {G}$. Theorem 10.6 of [Reference Borel, Labesse and SchwermerBLS96] establishes the following result regarding the existence of non-trivial cuspidal cohomology classes for $S$-arithmetic subgroups of $G$.
Theorem 1 Let $G$ be an absolutely almost simple algebraic group defined over $k$ that admits a Cartan-type automorphism. When the coefficient system is trivial, the cuspidal cohomology of $G$ over $S$ does not vanish, that is, every $S$-arithmetic subgroup of $G$ has a subgroup of finite index with non-zero cuspidal cohomology with respect to the trivial coefficient system.
The following assertion appears as Corollary 10.7 in [Reference Borel, Labesse and SchwermerBLS96]. Assume that $G$ is $k$-split and $k$ totally real or $G = {\mathrm {Res}}_{k'/k}G'$ where $k'$ is a CM-field. Then the cuspidal cohomology of $G$ over $S$ with respect to the trivial coefficient system does not vanish.
The proof of Corollary 10.7 amounts to exhibiting, in each case, a Cartan-type automorphism. In the first case, dealing with split groups, the proof is correct. As regards the second case where $G = {\mathrm {Res}}_{k'/k}G'$ with $k'$ a CM-field, it was observed by Rohlfs and Clozel independently that the assertion (and the proof) must be corrected since, to make sense, the argument implicitly uses strong extra assumptions. First of all, $G'$ has to be defined over $k$ so that the complex conjugation $c$ induced by the non-trivial element $\sigma$ in $\mathrm {Gal}(k'/k)$ acts as a $k$-rational automorphism of $G$. Observe that, strictly speaking, one has to extend the scalars from $k$ to $k'$ before applying the restriction functor. Further assumptions are necessary so that Corollary 10.7 in [Reference Borel, Labesse and SchwermerBLS96] should be replaced by the following statement.
Theorem 2 Let $k$ be a totally real number field and $G$ be an absolutely almost simple algebraic group defined over $k$. Consider the following cases:
(1) $G$ is $k$-split.
(2) $G = {\mathrm {Res}}_{k'/k}G'$ where $k'$ is a CM-field with $G'$ defined over $k$ totally real, satisfying one of the following hypotheses:
(2a) $\mathbf{H}=G'(k\otimes \mathbb {R})$ has a compact Cartan subgroup;
(2b) $G'$ is split over $k$ and simply connected.
Then the cuspidal cohomology of $G$ over $S$ with respect to the trivial coefficient system does not vanish.
Proof. In case (1), when $G$ is $k$-split, the proof is given in [Reference Borel, Labesse and SchwermerBLS96]: it relies on the first case of [Reference Borel, Labesse and SchwermerBLS96, Corollary 10.7] and Theorem 1. In case (2a) the result follows from Proposition 3 below and Theorem 1. In case (2b) the assertion is a particular case of [Reference LabesseLab99, Theorem 4.7.1], which in turn relies on case (1) above.
Most of the following proposition is well known (see, in particular, [Reference ShelstadShe79, Corollary 2.9], [Reference LanglandsLan89, Lemma 3.1] and [Reference AdamsAda14, p. 2132]) but, not knowing of a convenient reference, we sketch a proof.
Consider a connected semisimple algebraic group $G_0$ defined over $\mathbb {R}$. We denote by $\textbf {G}=G_0(\mathbb {C})$ the group of its complex points and by $\textbf {c}$ the complex conjugation on $\textbf {G}$. Then $\textbf {H}=G_0(\mathbb {R})$ is the group of fixed points under $\textbf {c}$. This anti-holomorphic involution is induced by an $\mathbb {R}$-automorphism $c$ of $G_1=\mathrm {Res}_{\mathbb {C}/\mathbb {R}}G_0$. Let $\boldsymbol {\theta }$ be a Cartan involution of $\textbf {G}$. The group $\textbf {U}$ of fixed points of $\boldsymbol {\theta }$ in $\textbf {G}$ is a compact real form: $\textbf {U}=U(\mathbb {R})$ where $U$ is a form of $G_0$ but not necessarily inner. Let $G^{**}$ be the split outer form of $G_0$. Choose a splitting $(B^*,T^*, \{X_\alpha \}_{\alpha \in \Delta })$ for $G^{**}$ over $\mathbb {R}$ where $T^*$ is a torus in a Borel subgroup $B^*$ and for each $\alpha \in \Delta$, the set of simple roots, $X_\alpha$ is a root vector. Let $\psi ^*$ be the automorphism of $G^{**}$ that preserves the splitting and whose action defines $G^*$, the quasi-split inner form of $G_0$. Let $w$ be the element of maximal length in the Weyl group for $T^*$.
Proposition 3 The following assertions are equivalent.
(i) The automorphism $c$ is of Cartan type.
(ii) The group $\mathbf{U}$ is an inner compact real form.
(iii) The group $\mathbf{H}$ has a compact Cartan subgroup.
(iv) The group $\mathbf{H}$ admits discrete series.
(v) The involution $w\circ \psi ^*$ acts by $-1$ on the root system of $T^*$.
Proof. The automorphism $c$ is of Cartan type if, by definition, $\textbf {c}=\mathrm {Int}(x)\circ \boldsymbol {\theta }$ for some $x\in \textbf {G}$, that is, if and only if $U$ is an inner form of $G_0$ or equivalently of $G^*$. This proves the equivalence of (i) and (ii). Assume now that $U$ is an inner form of $G_0$. Up to conjugation under $\textbf {G}$, we may assume that $\boldsymbol {\theta }$ is of the form $\boldsymbol {\theta }=\mathrm {Int}(x)\circ \textbf {c}$ with $x$ in the normalizer of a maximal torus $T$ in $G_0$ defined over $\mathbb {R}$. In particular, $x$ is semisimple and its centralizer $\textbf {L}$ in $\textbf {G}$ is a complex reductive subgroup of maximal rank. The cocycle relation $\mathrm {Int}(x\,\textbf {c}(x))=1$ implies that $\textbf {L}$ is stable under $\textbf {c}$. Then $\textbf {c}$ induces an anti-holomorphic involution on $\textbf {L}$ whose fixed points $\textbf {M}=\textbf {L}\cap \textbf {H}=\textbf {U}\cap \textbf {H}$ are a compact real form of $\textbf {L}$. A Cartan subgroup $\textbf {C}$ of $\textbf {M}$ is a compact Cartan subgroup in $\textbf {H}$. Hence (ii) implies (iii). Now, consider a torus $T$ in $G_0$ such that $\textbf {C}=T(\mathbb {R})$ is compact. Then the complex conjugation $\textbf {c}$ acts by $-1$ on the weights of $T$. Hence there is $n\in \textbf {G}$ which belongs to the normalizer of $T^*\subset G^*$ such that $\mathrm {Int}(n)\circ \psi ^*$ acts as $-1$ on the root system of $T^*$. Now, since $\psi ^*$ preserves the set of positive roots, $w=\mathrm {Int}(n)|_{T^*}$ is the element of maximal length in the Weyl group. This shows that (iii) implies (v). The equivalence of (iii) and (iv) is a well-known theorem [Reference Harish-ChandraHar66, Theorem 13] due to Harish-Chandra. Finally, Lemma 4 below shows that (v) implies (ii).
Lemma 4 Assume $w\circ \psi ^*$ acts by $-1$ on the root system. Then $G^*$ has an inner form $U$ such that $\mathbf{U}=U(\mathbb {R})$ is compact.
Proof. Consider the complex Lie algebra $\mathfrak {g}=\mathrm {Lie}(\textbf {G})$. Let $\Sigma$ be the set of roots, $\Sigma ^+$ the set of positive roots and $\mathfrak {g}_\alpha$ the vector space attached to $\alpha \in \Sigma$ with respect to the torus $T^*(\mathbb {C})$. Following Weyl [Reference WeylWey26], Chevalley [Reference ChevalleyChe55] and Tits [Reference TitsTit66], one may choose elements $X_\alpha \in \mathfrak {g}_\alpha$ for ${\alpha \in \Sigma }$ such that, if we define $H_\alpha \in \mathrm {Lie}(T^*(\mathbb {C}))$ by $H_\alpha =[X_\alpha ,X_{-\alpha }]$, we have
We assume the splitting compatible with this choice. Now let
The elements $Y_\alpha$ and $Z_\alpha$ for $\alpha \in \Sigma ^+$ together with the $W_\alpha$ for $\alpha \in \Delta$ build a basis for a real Lie algebra $\mathfrak {u}$. As in the proof of [Reference HelgasonHel62, Chapter III, Theorem 6.3], we see that the Killing form is negative definite on $\mathfrak {u}$ and hence the Lie subgroup $\textbf {U}\subset \textbf {G}$ with Lie algebra $\mathfrak {u}$ is compact. Since $\psi ^*$ preserves the splitting, $\psi ^*(X_\alpha )=X_{\psi ^*(\alpha )}$ for $\alpha \in \Delta$. Let $w$ be the element of maximal length in the Weyl group for $T^*$. There is an $n^*\in \textbf {G}$, uniquely determined modulo the center, such that the inner automorphism $w^*=\mathrm {Int}(n^*)$ acts as $w$ on $T^*$ and such that $w^*(X_\alpha )=-X_{w\alpha }$ for $\alpha \in \Delta$. This automorphism is of order 2 and commutes with $\psi ^*$. Now let $\phi =w^*\circ \psi ^*$. Since $w\circ \psi ^*$ acts by $-1$ on $\Sigma$ this implies $\phi (X_\alpha )=-X_{\phi (\alpha )}=-X_{-\alpha }$ for $\alpha \in \Delta$. It follows from the commutation relations and the relations $N_{\alpha ,\beta }=-N_{-\alpha ,-\beta }$ that $\phi (X_\alpha )=-X_{-\alpha }$ and $\phi (H_\alpha )=-H_{\alpha }$ for all $\alpha \in \Sigma$. Now $\phi$, which acts as an automorphism of the real Lie algebras $\mathfrak {g}^{**}$ generated by the $X_\alpha$ for $\alpha \in \Sigma$, can be extended to an antilinear involution of $\mathfrak {g}^{**}\otimes \mathbb {C}=\mathfrak {g}=\mathfrak {u}+i\mathfrak {u}$. This, in turn, induces a Cartan involution $\boldsymbol {\theta }$ on $\textbf {G}$: its fixed point set is the compact group $\textbf {U}=U(\mathbb {R})$ with Lie algebra $\mathfrak {u}$, and $U$ is the inner form of $G^*$ defined by the Galois cocycle $a_1=1$ and $a_\sigma =w^*$.
We observe that when, moreover, $G^*$ is almost simple, which means that the root system of $G^*$ is irreducible, the classification shows that condition (v) holds except when $G^*$ is split of type $A_n$ with $n\geqslant 2$, or $D_n$ with $n\geqslant 3$ odd, or $E_6$ or when $G^*$ is quasi-split but non-split of type $D_n$ with $n\ge 4$ even.
Acknowledgements
We thank Laurent Clozel and Raphaël Beuzart-Plessis for very useful discussions as well as the referee for pertinent remarks.