Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T09:41:48.605Z Has data issue: false hasContentIssue false

$D$-modules on spaces of rational maps

Published online by Cambridge University Press:  31 March 2014

Jonathan Barlev*
Affiliation:
Department of Mathematics, University of Chicago, 5734 University Avenue, Chicago, IL 60637, USA email jonathan.barlev@math.uchicago.edu

Abstract

Let $X$ be an algebraic curve. We study the problem of parametrizing geometric structures over $X$ which are only generically defined. For example, parametrizing generically defined maps (rational maps) from $X$ to a fixed target scheme $Y$. There are three methods for constructing functors of points for such moduli problems (all originally due to Drinfeld), and we show that the resulting functors are equivalent in the fppf Grothendieck topology. As an application, we obtain three presentations for the category of $D$-modules ‘on’ $B(K)\backslash G(\mathbb{A})/G(\mathbb{O})$, and we combine results about this category coming from the different presentations.

MSC classification

Type
Research Article
Copyright
© The Author 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beilinson, A. and Drinfeld, V., Chiral algebras, American Mathematical Society Colloquium Publications, vol. 51 (American Mathematical Society, Providence, RI, 2004); MR 2058353 (2005d:17007).Google Scholar
Braverman, A., Finkelberg, M., Gaitsgory, D. and Mirković, I., Intersection cohomology of Drinfeld’s compactifications, Selecta Math. (N.S.) 8 (2002), 381418; MR 1931170 (2003h:14060).Google Scholar
Braverman, A. and Gaitsgory, D., Geometric Eisenstein series, Invent. Math. 150 (2002), 287384; MR 1933587 (2003k:11109).Google Scholar
Drinfel’d, V. G. and Simpson, Carlos, B-structures on G-bundles and local triviality, Math. Res. Lett. 2 (1995), 823829; MR 1362973 (96k:14013).Google Scholar
Finkelberg, M. and Mirković, I., Semi-infinite flags. I. Case of global curve P1, in Differential topology, infinite-dimensional Lie algebras, and applications, American Mathematical Society Translations, Series 2, vol. 194 (American Mathematical Society, Providence, RI, 1999), 81112; MR 1729360 (2001j:14029).Google Scholar
Gaitsgory, D., The extended Whittaker category, Preprint (2010), http://math.harvard.edu/∼gaitsgde/GL/extWhit.pdf.Google Scholar
Gaitsgory, D., Notes on geometric Langlands: generalities on DG categories, Preprint (2011), http://math.harvard.edu/∼gaitsgde/GL/textDG.pdf.Google Scholar
Gaitsgory, D., Contractibility of the space of rational maps, Invent. Math. 191 (2013), 91196; MR 3004779.CrossRefGoogle Scholar
Gaitsgory, D. and Rozenblyum, N., Crystals and d-modules, Preprint (2011), http://math.harvard.edu/∼gaitsgde/GL/IndCohtext.pdf.Google Scholar
Hartshorne, R., Algebraic geometry, Graduate Texts in Mathematics, vol. 52 (Springer, New York, 1977); MR 0463157 (57 #3116).CrossRefGoogle Scholar
Johnstone, P. T., Sketches of an elephant: a topos theory compendium. Vol. 2, Oxford Logic Guides, vol. 44 (Clarendon Press, Oxford, 2002); MR 2063092 (2005g:18007).Google Scholar
Lurie, J., Higher topos theory, Annals of Mathematics Studies, vol. 170 (Princeton University Press, Princeton, NJ, 2009); MR 2522659 (2010j:18001).CrossRefGoogle Scholar
Lurie, J., Structured spaces, Preprint (2011), http://math.harvard.edu/∼lurie/papers/DAG-V.pdf.Google Scholar