Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T22:13:38.441Z Has data issue: false hasContentIssue false

Euler systems for modular forms over imaginary quadratic fields

Published online by Cambridge University Press:  08 April 2015

Antonio Lei
Affiliation:
Département de Mathématiques et de Statistique, Université Laval, Pavillon Alexandre-Vachon, 1045 avenue de la Médecine, Québec, QC, CanadaG1V 0A6 email antonio.lei@mat.ulaval.ca
David Loeffler
Affiliation:
Mathematics Institute, Zeeman Building, University of Warwick, Coventry CV4 7AL, UK email d.a.loeffler@warwick.ac.uk
Sarah Livia Zerbes
Affiliation:
Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK email s.zerbes@ucl.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We construct an Euler system attached to a weight 2 modular form twisted by a Grössencharacter of an imaginary quadratic field $K$, and apply this to bounding Selmer groups.

Type
Research Article
Copyright
© The Authors 2015 

References

Beĭlinson, A., Higher regulators and values of L-functions, Current Problems in Mathematics, vol. 24 (Itogi Nauki i Tekhniki, Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1984), 181238; MR 760999.Google Scholar
Bertolini, M. and Darmon, H., Iwasawa’s main conjecture for elliptic curves over anticyclotomic ℤp -extensions, Ann. of Math. (2) 162 (2005), 164; MR 2178960.CrossRefGoogle Scholar
Bertolini, M., Darmon, H. and Prasanna, K., Generalized Heegner cycles and p-adic Rankin L-series, Duke Math. J. 162 (2013), 10331148, with an appendix by Brian Conrad;MR 3053566.CrossRefGoogle Scholar
Bertolini, M., Darmon, H. and Rotger, V., Beilinson–Flach elements and Euler systems I: Syntomic regulators and p-adic Rankin L-series, J. Algebraic Geom. 24 (2015), 355378, doi:10.1090/S1056-3911-2014-00670-6.CrossRefGoogle Scholar
Bloch, S. and Kato, K., L-functions and Tamagawa numbers of motives, in The Grothendieck Festschrift, Vol. I, Progress in Mathematics, vol. 86, eds Cartier, P. et al. (Birkhäuser, Boston, 1990), 333400; MR 1086888.Google Scholar
Castella, F., On the $p$-adic variation of Heegner points, Preprint (2014), arXiv:1410.6591.Google Scholar
Darmon, H., Diamond, F. and Taylor, R., Fermat’s last theorem, in Elliptic curves, modular forms & Fermat’s last theorem (Hong Kong, 1993) (International Press, Cambridge, MA, 1997), 2140; MR 1605752.Google Scholar
Darmon, H. and Rotger, V., Diagonal cycles and Euler systems I: A p-adic Gross–Zagier formula, Ann. Sci. Éc. Norm. Supér. 47 (2014), 779832; MR 3250064.CrossRefGoogle Scholar
Emerton, M., Pollack, R. and Weston, T., Variation of Iwasawa invariants in Hida families, Invent. Math. 163 (2006), 523580; MR 2207234.CrossRefGoogle Scholar
Ghate, E., González-Jiménez, E. and Quer, J., On the Brauer class of modular endomorphism algebras, Int. Math. Res. Not. IMRN 2005 701723; MR 2146605.CrossRefGoogle Scholar
Howard, B., Bipartite Euler systems, J. Reine Angew. Math. 597 (2006), 125; MR 2264314.CrossRefGoogle Scholar
Jacquet, H. and Shalika, J. A., A non-vanishing theorem for zeta functions of GLn, Invent. Math. 38 (1976), 116; MR 0432596.CrossRefGoogle Scholar
Kato, K., P-adic Hodge theory and values of zeta functions of modular forms, Astérisque 295 (2004), 117290; Cohomologies $p$-adiques et applications arithmétiques. III; MR 2104361.Google Scholar
Kings, G., Loeffler, D. and Zerbes, S. L., Rankin–Selberg Euler systems and $p$-adic interpolation, Preprint (2014), arXiv:1405.3079.Google Scholar
Lei, A., Loeffler, D. and Zerbes, S. L., Euler systems for Rankin–Selberg convolutions of modular forms, Ann. of Math. (2) 180 (2014), 653771; MR 3224721.CrossRefGoogle Scholar
Loeffler, D. and Zerbes, S. L., Iwasawa theory and p-adic L-functions over Zp2 -extensions, Int. J. Number. Theory 10 (2014), 20452096; MR 3273476.CrossRefGoogle Scholar
Mazur, B. and Rubin, K., Kolyvagin systems, Mem. Amer. Math. Soc. 168 (2004), MR 2031496.Google Scholar
Miyake, T., Modular forms, Monographs in Mathematics, English edition (Springer, Berlin, 2006), translated from the 1976 Japanese original by Yoshitaka Maeda; MR 1021004.Google Scholar
Momose, F., On the -adic representations attached to modular forms, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), 89109; MR 617867.Google Scholar
Ohta, M., Ordinary p-adic étale cohomology groups attached to towers of elliptic modular curves. II, Math. Ann. 318 (2000), 557583; MR 1800769.CrossRefGoogle Scholar
Perrin-Riou, B., Fonctions L p-adiques associées à une forme modulaire et à un corps quadratique imaginaire, J. Lond. Math. Soc. (2) 38 (1988), 132; MR 949078.CrossRefGoogle Scholar
Ribet, K. A., On l-adic representations attached to modular forms. II, Glasg. Math. J. 27 (1985), 185194; MR 819838.CrossRefGoogle Scholar
Rubin, K., Euler systems, Annals of Mathematics Studies, vol. 147 (Princeton University Press, Princeton, NJ, 2000); MR 1749177.Google Scholar
Skinner, C. and Urban, E., The Iwasawa main conjectures for GL 2, Invent. Math. 195 (2014), 1277; MR 3148103.CrossRefGoogle Scholar
Wiles, A., Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2) 141 (1995), 443551; MR 1333035.CrossRefGoogle Scholar