Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-11T01:26:09.828Z Has data issue: false hasContentIssue false

Foliations with radial Kupka set and pencils of Calabi–Yau hypersurfaces

Published online by Cambridge University Press:  24 November 2006

Omegar Calvo-Andrade
Affiliation:
omegar@agt.uva.es
Luís Gustavo Mendes
Affiliation:
Departamento Matemática, Univ. Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, CEP 91509-900, Brazilmendes@mat.ufrgs.br
Ivan Pan
Affiliation:
Departamento Matemática, Univ. Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, CEP 91509-900, Brazilpan@mat.ufrgs.br
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We show that holomorphic singular codimension one foliations of the complex projective space with a Kupka singular set of radial type and verifying some global hypotheses have rational first integral. The generic elements of such pencils are Calabi–Yau.

Type
Research Article
Copyright
Foundation Compositio Mathematica 2006