Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T13:05:41.919Z Has data issue: false hasContentIssue false

Formule du conducteur pour un caractère l-adique

Published online by Cambridge University Press:  01 May 2009

Isabelle Vidal*
Affiliation:
LAGA-Institut Galilée, Université Paris 13, 99 av. J.-B. Clément, 93430 Villetaneuse, France (email: ividal@math.univ-paris13.fr)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let K be a local field of equal characteristic p>2, let XK/K be a smooth proper relative curve, and let ℱ be a rank 1 smooth l-adic sheaf (lp) on a dense open subset UKXK. In this paper, under some assumptions on the wild ramification of ℱ, we prove a conductor formula that computes the Swan conductor of the etale cohomology of the vanishing cycles of ℱ. Our conductor formula is a generalization of the conductor formula of Bloch, but for non-constant coefficients.

Résumé

Soit K un corps local d’égale caractéristique p>2, XK/K une courbe relative propre et lisse, ℱ un caractère l-adique (avec lp) lisse sur un ouvert dense UKXK. Dans cet article, sous certaines hypothèses sur la ramification sauvage de ℱ, on prouve une formule qui calcule le conducteur de Swan de la cohomologie des cycles évanescents de ℱ. Notre formule du conducteur est une généralisation, pour des coefficients non constants, de la formule du conducteur de Bloch.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2009

References

[1]Abbes, A. and Saito, T., Analyse micro-locale l-adique en caractéristique p>0: le cas d’un trait. Preprint, 2006, Publ. Res. Inst. Math. Sci., to appear.0:+le+cas+d’un+trait.+Preprint,+2006,+Publ.+Res.+Inst.+Math.+Sci.,+to+appear.>Google Scholar
[2]Abbes, A. and Saito, T., The characteristic class and ramification of an l-adic étale sheaf, Invent. Math. 168 (2007), 567612.CrossRefGoogle Scholar
[3]Bloch, S., Cycles on arithmetic schemes and Euler characteristics of curves, in Algebraic geometry, Bowdoin, Brunswick, ME, 1985 (American Mathematical Society, Providence, RI, 1987), 421450.CrossRefGoogle Scholar
[4]Deligne, P., Cohomologie étale, in Séminaire de géométrie algébrique du Bois-Marie (SGA 4(1/2)), Avec la collaboration de J. F. Boutot, A. Grothendieck, L. Illusie et J. L. Verdier, Lecture Notes in Mathematics, vol. 569 (Springer, Berlin, 1977).Google Scholar
[5]Fulton, W., Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3rd Series, A Series of Modern Surveys in Mathematics, vol. 2 (Springer, Berlin, 1998).CrossRefGoogle Scholar
[6]Illusie, L., An overview of the work of K. Fujiwara, K. Kato, and C. Nakayama on logarithmic étale cohomology, Astérisque 279 (2002), 271322 (Cohomologies p-adiques et applications arithmétiques, II).Google Scholar
[7]Kato, K., Swan conductors for characters of degree one in the imperfect residue field case, in Algebraic K-theory and algebraic number theory, Honolulu, HI, 1987, Contemporary Mathematics, vol. 83 (American Mathematical Society, Providence, RI, 1989), 101131.Google Scholar
[8]Kato, K., Class field theory, D-modules, and ramification on higher-dimensional schemes. I, Amer. J. Math. 116(4) (1994), 757784.CrossRefGoogle Scholar
[9]Kato, K., Toric singularities, Amer. J. Math. 116 (1994), 10731099.CrossRefGoogle Scholar
[10]Kato, K. and Saito, T., On the conductor formula of Bloch, Publ. Math. Inst. Hautes Études Sci. (2004), 5151.CrossRefGoogle Scholar
[11]Kato, K. and Saito, T., Ramification theory of schemes over a local field, Talk (2006).Google Scholar
[12]Kato, K. and Saito, T., Ramification theory for varieties over a perfect field, Ann. of Math. (2) 168(2) (2008), 3396.CrossRefGoogle Scholar
[13]Kato, K., Saito, S. and Saito, T., Artin characters for algebraic surfaces, Amer. J. Math. 110 (1988), 4975.CrossRefGoogle Scholar
[14]Matsuda, S., On the Swan conductor in positive characteristic, Amer. J. Math. 119 (1997), 705739.CrossRefGoogle Scholar
[15]Saito, T., Vanishing cycles and geometry of curves over a discrete valuation ring, Amer. J. Math. 109 (1987), 10431085.CrossRefGoogle Scholar
[16]Saito, T., The Euler numbers of l-adic sheaves of rank 1 in positive characteristic, in Algebraic geometry and analytic geometry, Tokyo, 1990, ICM-90 Satellite Conf. Proc. (Springer, Tokyo, 1991), 165181.Google Scholar
[17]Groupes de monodromie en géométrie algébrique. II, in Séminaire de géométrie algébrique du Bois-Marie 1967–1969 (SGA 7 II), Dirigé par P. Deligne et N. Katz, Lecture Notes in Mathematics, vol. 340 (Springer, Berlin, 1973).Google Scholar
[18]Théorie des topos et cohomologie étale des schémas, vol. 3, in Séminaire de géométrie algébrique du Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck et J. L. Verdier, Avec la collaboration de P. Deligne et B. Saint-Donat, Lecture Notes in Mathematics, vol. 305 (Springer, Berlin, 1973).Google Scholar
[19]Cohomologie l-adique et fonctions L, in Séminaire de géometrie algébrique du Bois-Marie 1965–1966 (SGA 5), Edité par Luc Illusie, Lecture Notes in Mathematics, vol. 589 (Springer, Berlin, 1977).Google Scholar
[20]Tsushima, T., Localized GOS formula and conductor formula. Preprint, 2007.Google Scholar
[21]Vidal, I., Formule de torsion pour le facteur epsilon d’un caractère sur une surface. Preprint, 2007, Manuscripta Math., to appear.Google Scholar