Article contents
Galois symmetries of knot spaces
Published online by Cambridge University Press: 29 April 2021
Abstract
We exploit the Galois symmetries of the little disks operads to show that many differentials in the Goodwillie–Weiss spectral sequences approximating the homology and homotopy of knot spaces vanish at a prime $p$. Combined with recent results on the relationship between embedding calculus and finite-type theory, we deduce that the $(n+1)$th Goodwillie–Weiss approximation is a $p$-local universal Vassiliev invariant of degree $\leq n$ for every $n \leq p + 1$.
MSC classification
- Type
- Research Article
- Information
- Copyright
- © The Author(s) 2021
Footnotes
We gratefully acknowledge the support through: grant SFRH/BPD/99841/2014 and project MAT-PUR/31089/2017, funded by Fundação para a Ciência e Tecnologia; projects ANR-14-CE25-0008 SAT, ANR-16-CE40-0003 ChroK, ANR-18-CE40-0017 PerGAMo, funded by Agence Nationale pour la Recherche.
References
- 4
- Cited by