Published online by Cambridge University Press: 30 April 2019
We prove the genus-one restriction of the all-genus Landau–Ginzburg/Calabi–Yau conjecture of Chiodo and Ruan, stated in terms of the geometric quantization of an explicit symplectomorphism determined by genus-zero invariants. This gives the first evidence supporting the higher-genus Landau–Ginzburg/Calabi–Yau correspondence for the quintic $3$-fold, and exhibits the first instance of the ‘genus zero controls higher genus’ principle, in the sense of Givental’s quantization formalism, for non-semisimple cohomological field theories.