Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T17:15:38.560Z Has data issue: false hasContentIssue false

Graded Jacobi operators on the algebra of differential forms

Published online by Cambridge University Press:  04 December 2007

J. V. BELTRÁN
Affiliation:
Dpt. de Geometria i Topologia, Universitatt de València; C/Dr. Moliner 50, E-46100-Burjassot (València), Spain. e-mail address: beltranv@uv.es
J. MONTERDE
Affiliation:
Dpt. de Geometria i Topologia, Universitatt de València; C/Dr. Moliner 50, E-46100-Burjassot (València), Spain. e-mail address: monterde@uv.es
O. A. SÁNCHEZ-VALENZUELA
Affiliation:
CIMAT; Apdo. Postal, 402; C.P. 36000 Guanajuato, Gto., México. e-mail address: sanchez@uv.es Dpt. de Geometria i Topologia, Universitatt de València; C/Dr. Moliner 50, E-46100-Burjassot (València), Spain.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

One-to-one correspondences are established between the set of all nondegenerate graded Jacobi operators of degree $-1$ defined on the graded algebra $\Omega(M)$ of differential forms on a smooth, oriented, Riemannian manifold $M$, the space of bundle isomorphisms $L{\A}TM{\to} TM$, and the space of nondegenerate derivations of degree $1$ having null square. Derivations with this property, and Jacobi structures of odd $\Bbb Z_2$-degree are also studied through the action of the automorphism group of $\Omega(M)$.

Type
Research Article
Copyright
© 1997 Kluwer Academic Publishers