No CrossRef data available.
Published online by Cambridge University Press: 17 August 2010
On a Fano manifold M we study the supremum of the possible t such that there is a Kähler metric ω∈c1(M) with Ricci curvature bounded below by t. This is shown to be the same as the maximum existence time of Aubin’s continuity path for finding Kähler–Einstein metrics. We show that on P2 blown up in one point this supremum is 6/7, and we give upper bounds for other manifolds.