Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T17:30:09.706Z Has data issue: false hasContentIssue false

Greatest lower bounds on the Ricci curvature of Fano manifolds

Published online by Cambridge University Press:  17 August 2010

Gábor Székelyhidi*
Affiliation:
Department of Mathematics, Columbia University, 2990 Broadway, New York, NY 10027, USA (email: gabor@math.columbia.edu)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

On a Fano manifold M we study the supremum of the possible t such that there is a Kähler metric ωc1(M) with Ricci curvature bounded below by t. This is shown to be the same as the maximum existence time of Aubin’s continuity path for finding Kähler–Einstein metrics. We show that on P2 blown up in one point this supremum is 6/7, and we give upper bounds for other manifolds.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2010

References

[1]Aubin, T., Équations du type Monge–Ampère sur les varietés kählériennes compactes, Bull. Sci. Math. (2) 102 (1978), 6395.Google Scholar
[2]Aubin, T., Réduction de cas positif de l’équation de Monge–Ampère sur les variétés kählériennes compactes à la démonstration d’une inégalité, J. Funct. Anal. 57 (1984), 143153.CrossRefGoogle Scholar
[3]Bando, S. and Mabuchi, T., Uniqueness of Einstein Kähler metrics modulo connected group actions, in Algebraic geometry, Sendai, 1985, Advanced Studies in Pure Mathematics, vol. 10 (North-Holland, Amsterdam, 1987), 1140.CrossRefGoogle Scholar
[4]Chen, X. X., Space of Kähler metrics IV – on the lower bound of the K-energy, Preprint (2008), arXiv:0809.4081.Google Scholar
[5]Chen, X. X., On the lower bound of the Mabuchi energy and its application, Int. Math. Res. Not. IMRN 12 (2000), 607623.CrossRefGoogle Scholar
[6]Chen, X. X. and Tian, G., Geometry of Kähler metrics and foliations by holomorphic discs, Publ. Math. Inst. Hautes Études Sci. 107 (2008), 1107.CrossRefGoogle Scholar
[7]Donaldson, S. K., A note on the α-invariant of the Mukai–Umemura 3-fold, arXiv:0711.4357.Google Scholar
[8]Donaldson, S. K., Symmetric spaces, Kähler geometry and Hamiltonian dynamics, in Northern California symplectic geometry seminar, American Mathematical Society Translations, Series 2, vol. 196 (American Mathematical Society, Providence, RI, 1999), 1333.Google Scholar
[9]Donaldson, S. K., Scalar curvature and projective embeddings, I, J. Differential Geom. 59 (2001), 479522.CrossRefGoogle Scholar
[10]Donaldson, S. K., Scalar curvature and stability of toric varieties, J. Differential Geom. 62 (2002), 289349.CrossRefGoogle Scholar
[11]Donaldson, S. K., Constant scalar curvature metrics on toric surfaces, Geom. Funct. Anal. 19 (2009), 83136.CrossRefGoogle Scholar
[12]Hwang, A. and Singer, M. A., A momentum construction for circle-invariant Kähler metrics, Trans. Amer. Math. Soc. 354 (2002), 22852325.CrossRefGoogle Scholar
[13]Kuranishi, M., New proof for the existence of locally complete families of complex structures, in Proc. conf. complex analysis, Minneapolis, 1964 (Springer, Berlin, 1965), 142154.CrossRefGoogle Scholar
[14]Mabuchi, T., K-energy maps integrating Futaki invariants, Tohoku Math. J. (2) 38 (1986), 575593.CrossRefGoogle Scholar
[15]Mabuchi, T., Some symplectic geometry on compact Kähler manifolds, Osaka J. Math. 24 (1987), 227252.Google Scholar
[16]McDuff, D. and Salamon, D., Introduction to symplectic topology (Oxford University Press, Oxford, 1998).Google Scholar
[17]Munteanu, O. and Székelyhidi, G., On convergence of the Kähler–Ricci flow, Preprint, arXiv:0904.3505.Google Scholar
[18]Panov, D. and Ross, J., Slope stability and exceptional divisors of high genus, Math. Ann. 343 (2009), 79101.CrossRefGoogle Scholar
[19]Paul, S. T. and Tian, G., CM stability and the generalised Futaki invariant II, math.DG/0606505.Google Scholar
[20]Phong, D. H., Ross, J. and Sturm, J., Deligne pairings and the Knudsen–Mumford expansion, J. Differential Geom. 78 (2008), 475496.Google Scholar
[21]Phong, D. H., Song, J., Sturm, J. and Weinkove, B., The Moser–Trudinger inequality on Kähler–Einstein manifolds, Amer. J. Math. 130 (2008), 10671085.CrossRefGoogle Scholar
[22]Phong, D. H. and Sturm, J., Lectures on stability and constant scalar curvature, in Current developments in mathematics 2007 (International Press, Somerville, MA, 2009), arXiv:0801.4179.Google Scholar
[23]Ross, J. and Thomas, R. P., An obstruction to the existence of constant scalar curvature Kähler metrics, J. Differential Geom. 72 (2006), 429466.CrossRefGoogle Scholar
[24]Semmes, S., Complex Monge–Ampère equations and symplectic manifolds, Amer. J. Math. 114 (1992), 495550.CrossRefGoogle Scholar
[25]Song, J., The α-invariant on toric Fano manifolds, Amer. J. Math. 127 (2005), 12471259.CrossRefGoogle Scholar
[26]Song, J. and Tian, G., The Kähler–Ricci flow on surfaces of positive Kodaira dimension, Invent. Math. 170 (2007), 609653.CrossRefGoogle Scholar
[27]Song, J. and Weinkove, B., On the convergence and singularities of the J-flow with applications to the Mabuchi energy, Comm. Pure Appl. Math. 61 (2008), 210229.CrossRefGoogle Scholar
[28]Stoppa, J., Twisted constant scalar curvature Kähler metrics and Kähler slope stability, J. Differential Geom. 83 (2009), 663691.CrossRefGoogle Scholar
[29]Székelyhidi, G., The Kähler–Ricci flow and K-polystability. Amer. J. Math., arXiv:0803.1613, to appear.Google Scholar
[30]Székelyhidi, G., The Calabi functional on a ruled surface, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), 837856.CrossRefGoogle Scholar
[31]Tian, G., On Kähler–Einstein metrics on certain Kähler manifolds with c 1(M)>0, Invent. Math. 89 (1987), 225246.CrossRefGoogle Scholar
[32]Tian, G., On stability of the tangent bundles of Fano varieties, Internat. J. Math. 3 (1992), 401413.CrossRefGoogle Scholar
[33]Tian, G., Kähler–Einstein metrics with positive scalar curvature, Invent. Math. 137 (1997), 137.CrossRefGoogle Scholar
[34]Weinkove, B., Convergence of the J-flow on Kähler surfaces, Comm. Anal. Geom. 12 (2004), 949965.CrossRefGoogle Scholar
[35]Yau, S.-T., On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation I, Comm. Pure Appl. Math. 31 (1978), 339411.CrossRefGoogle Scholar
[36]Yau, S.-T., Open problems in geometry, Proc. Sympos. Pure Math. 54 (1993), 128.Google Scholar