Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T09:03:50.441Z Has data issue: false hasContentIssue false

Holomorphic Legendrian curves

Published online by Cambridge University Press:  29 June 2017

Antonio Alarcón
Affiliation:
Departamento de Geometría y Topología e Instituto de Matemáticas (IEMath-GR), Universidad de Granada, Campus de Fuentenueva s/n, E–18071 Granada, Spain email alarcon@ugr.es
Franc Forstnerič
Affiliation:
Faculty of Mathematics and Physics, University of Ljubljana, and Institute of Mathematics, Physics and Mechanics, Jadranska 19, SI–1000 Ljubljana, Slovenia email franc.forstneric@fmf.uni-lj.si
Francisco J. López
Affiliation:
Departamento de Geometría y Topología e Instituto de Matemáticas (IEMath-GR), Universidad de Granada, Campus de Fuentenueva s/n, E–18071 Granada, Spain email fjlopez@ugr.es

Abstract

In this paper we study holomorphic Legendrian curves in the standard holomorphic contact structure on $\mathbb{C}^{2n+1}$ for any $n\in \mathbb{N}$. We provide several approximation and desingularization results which enable us to prove general existence theorems, settling some of the open problems in the subject. In particular, we show that every open Riemann surface $M$ admits a proper holomorphic Legendrian embedding $M{\hookrightarrow}\mathbb{C}^{2n+1}$, and we prove that for every compact bordered Riemann surface $M={M\unicode[STIX]{x0030A}}\,\cup \,bM$ there exists a topological embedding $M{\hookrightarrow}\mathbb{C}^{2n+1}$ whose restriction to the interior is a complete holomorphic Legendrian embedding ${M\unicode[STIX]{x0030A}}{\hookrightarrow}\mathbb{C}^{2n+1}$. As a consequence, we infer that every complex contact manifold $W$ carries relatively compact holomorphic Legendrian curves, normalized by any given bordered Riemann surface, which are complete with respect to any Riemannian metric on $W$.

Type
Research Article
Copyright
© The Authors 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, R., Transversality in manifolds of mappings , Bull. Amer. Math. Soc. 69 (1963), 470474; MR 0149495.CrossRefGoogle Scholar
Alarcón, A., Drinovec Drnovšek, B., Forstnerič, F. and López, F. J., Minimal surfaces in minimally convex domains, Preprint (2015), arXiv:1510.04006 [math.DG].Google Scholar
Alarcón, A., Drinovec Drnovšek, B., Forstnerič, F. and López, F. J., Every bordered Riemann surface is a complete conformal minimal surface bounded by Jordan curves , Proc. Lond. Math. Soc. (3) 111 (2015), 851886; MR 3407187.Google Scholar
Alarcón, A. and Forstnerič, F., Every bordered Riemann surface is a complete proper curve in a ball , Math. Ann. 357 (2013), 10491070; MR 3118624.CrossRefGoogle Scholar
Alarcón, A. and Forstnerič, F., Null curves and directed immersions of open Riemann surfaces , Invent. Math. 196 (2014), 733771; MR 3211044.CrossRefGoogle Scholar
Alarcón, A. and Forstnerič, F., The Calabi–Yau problem, null curves, and Bryant surfaces , Math. Ann. 363 (2015), 913951; MR 3412347.Google Scholar
Alarcón, A., Forstnerič, F. and López, F. J., Every meromorphic function is the Gauss map of a conformal minimal surface, Preprint (2016), arXiv:1604.00514 [math.DG].Google Scholar
Alarcón, A., Forstnerič, F. and López, F. J., New complex analytic methods in the study of non-orientable minimal surfaces in  $\mathbb{R}^{n}$ , Mem. Amer. Math. Soc., to appear. Preprint (2016), arXiv:1603.01691 [math.DG].Google Scholar
Alarcón, A., Forstnerič, F. and López, F. J., Embedded minimal surfaces in ℝ n , Math. Z. 283 (2016), 124; MR 3489056.CrossRefGoogle Scholar
Alarcón, A., Globevnik, J. and López, F. J., A construction of complete complex hypersurfaces in the ball with control on the topology, J. Reine Angew. Math., to appear, doi:10.1515/crelle-2016-0061 (online first version).CrossRefGoogle Scholar
Alarcón, A. and López, F. J., Minimal surfaces in ℝ3 properly projecting into ℝ2 , J. Differential Geom. 90 (2012), 351381; MR 2916039.CrossRefGoogle Scholar
Alarcón, A. and López, F. J., Null curves in ℂ3 and Calabi–Yau conjectures , Math. Ann. 355 (2013), 429455; MR 3010135.Google Scholar
Alarcón, A. and López, F. J., Properness of associated minimal surfaces , Trans. Amer. Math. Soc. 366 (2014), 51395154; MR 3240920.CrossRefGoogle Scholar
Alarcón, A. and López, F. J., Approximation theory for nonorientable minimal surfaces and applications , Geom. Topol. 19 (2015), 10151062; MR 3336277.CrossRefGoogle Scholar
Alarcón, A. and López, F. J., Complete bounded embedded complex curves in ℂ2 , J. Eur. Math. Soc. (JEMS) 18 (2016), 16751705; MR 3519537.CrossRefGoogle Scholar
Bryant, R. L., Conformal and minimal immersions of compact surfaces into the 4-sphere , J. Differential Geom. 17 (1982), 455473; MR 679067.Google Scholar
Chow, W. L., Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung , Math. Ann. 117 (1939), 98105; MR 0001880.CrossRefGoogle Scholar
Drinovec Drnovšek, B. and Forstnerič, F., The Poletsky–Rosay theorem on singular complex spaces , Indiana Univ. Math. J. 61 (2012), 14071423; MR 3085613.Google Scholar
Eliashberg, Y., Classification of overtwisted contact structures on 3-manifolds , Invent. Math. 98 (1989), 623637; MR 1022310.CrossRefGoogle Scholar
Eliashberg, Y., Classification of contact structures on R 3 , Int. Math. Res. Not. IMRN 1993 (1993), 8791; MR 1208828.Google Scholar
Forstnerič, F., Stein manifolds and holomorphic mappings: the homotopy principle in complex analysis, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, A Series of Modern Surveys in Mathematics, vol. 56 (Springer, Heidelberg, 2011); MR 2975791.CrossRefGoogle Scholar
Forstnerič, F., Hyperbolic complex contact structures on  $\mathbb{C}^{2n+1}$ , J. Geom. Anal., to appear, doi:10.1007/s12220-017-9800-9 (online first version).CrossRefGoogle Scholar
Forstnerič, F. and Wold, E. F., Bordered Riemann surfaces in ℂ2 , J. Math. Pures Appl. (9) 91 (2009), 100114; MR 2487902.CrossRefGoogle Scholar
Geiges, H., An introduction to contact topology, Cambridge Studies in Advanced Mathematics, vol. 109 (Cambridge University Press, Cambridge, 2008); MR 2397738.Google Scholar
Geiges, H., Contact structures and geometric topology , in Global differential geometry, Springer Proceedings in Mathematics, vol. 17 (Springer, Heidelberg, 2012), 463489; MR 3289851.Google Scholar
Globevnik, J., A complete complex hypersurface in the ball of ℂ N , Ann. of Math. (2) 182 (2015), 10671091; MR 3418534.CrossRefGoogle Scholar
Gromov, M., Carnot–Carathéodory spaces seen from within , in Sub-Riemannian geometry, Progress in Mathematics, vol. 144 (Birkhäuser, Basel, 1996), 79323; MR 1421823.CrossRefGoogle Scholar
Gunning, R. C. and Narasimhan, R., Immersion of open Riemann surfaces , Math. Ann. 174 (1967), 103108; MR 0223560 (36 #6608).CrossRefGoogle Scholar
LeBrun, C., Fano manifolds, contact structures, and quaternionic geometry , Internat. J. Math. 6 (1995), 419437; MR 1327157.Google Scholar
Landsberg, J. M. and Manivel, L., Legendrian varieties , Asian J. Math. 11 (2007), 341359; MR 2372722.Google Scholar
Martín, F., Umehara, M. and Yamada, K., Flat surfaces in hyperbolic 3-space whose hyperbolic Gauss maps are bounded , Rev. Mat. Iberoam. 30 (2014), 309316; MR 3186941.Google Scholar
Mergelyan, S. N., On the representation of functions by series of polynomials on closed sets , Dokl. Akad. Nauk SSSR (N.S.) 78 (1951), 405408; MR 0041929.Google Scholar
Moser, J., On the volume elements on a manifold , Trans. Amer. Math. Soc. 120 (1965), 286294; MR 0182927.CrossRefGoogle Scholar
Segre, B., Sulle curve algebriche le cui tangenti appartengono al massimo numero di complessi lineari indipendenti , Memorie Accad. d. L. Roma (6) 2 (1926), 577592.Google Scholar
Sussmann, H. J., Orbits of families of vector fields and integrability of distributions , Trans. Amer. Math. Soc. 180 (1973), 171188; MR 0321133.Google Scholar
Sussmann, H. J., Orbits of families of vector fields and integrability of systems with singularities , Bull. Amer. Math. Soc. 79 (1973), 197199; MR 0310922.CrossRefGoogle Scholar
Yang, P., Curvature of complex submanifolds of C n , in Several complex variables, Williamstown, MA, 1975, Proceedings of Symposia in Pure Mathematics, vol. 30, part 2 (American Mathematical Society, Providence, RI, 1977), 135137; MR 0450606.Google Scholar
Yang, P., Curvatures of complex submanifolds of C n , J. Differential Geom. 12 (1978), 499511; MR 512921.Google Scholar