Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T16:44:27.476Z Has data issue: false hasContentIssue false

Kähler groups, real hyperbolic spaces and the Cremona group. With an appendix by Serge Cantat

Published online by Cambridge University Press:  30 November 2011

Thomas Delzant
Affiliation:
IRMA, Université de Strasbourg & CNRS, 7 rue René Descartes, 67084 Strasbourg, France (email: delzant@math.unistra.fr)
Pierre Py
Affiliation:
University of Chicago, Chicago, IL 60637, USA (email: pierre.py@math.uchicago.edu)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Generalizing a classical theorem of Carlson and Toledo, we prove that any Zariski dense isometric action of a Kähler group on the real hyperbolic space of dimension at least three factors through a homomorphism onto a cocompact discrete subgroup of PSL2(ℝ). We also study actions of Kähler groups on infinite-dimensional real hyperbolic spaces, describe some exotic actions of PSL2(ℝ) on these spaces, and give an application to the study of the Cremona group.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2011

References

[Akh95]Akhiezer, D. N., Lie group actions in complex analysis, Aspects of Mathematics, vol. E27 (Friedr. Vieweg & Sohn, Braunschweig, 1995).CrossRefGoogle Scholar
[ABCKT96]Amoros, J., Burger, M., Corlette, K., Kotschick, D. and Toledo, D., Fundamental groups of compact Kähler manifolds, Mathematical Surveys and Monographs, vol. 44 (American Mathematical Society, Providence, RI, 1996).CrossRefGoogle Scholar
[Bla09]Blanc, J., Sous-groupes algébriques du groupe de Cremona, Transform. Groups 14 (2009), 249285.CrossRefGoogle Scholar
[BG80]Borchers, H. J. and Garber, W. D., Analyticity of solutions of the O(N) nonlinear σ-model, Comm. Math. Phys. 71 (1980), 299309.CrossRefGoogle Scholar
[BFJ08]Boucksom, S., Favre, C. and Jonsson, M., Degree growth of meromorphic surface maps, Duke Math. J. 141 (2008), 519538.CrossRefGoogle Scholar
[Bur10]Burger, M., Fundamental groups of Kähler manifolds and geometric group theory, Bourbaki Seminar No. 1022 (2010), Astérisque, to appear.Google Scholar
[BIM05]Burger, M., Iozzi, A. and Monod, N., Equivariant embeddings of trees into hyperbolic spaces, Int. Math. Res. Not. IMRN 2005 (2005), 13311369.CrossRefGoogle Scholar
[Can11]Cantat, S., Sur les groupes de transformations birationnelles des surfaces, Ann. of Math. (2) 174 (2011), 299340.CrossRefGoogle Scholar
[CF03]Cantat, S. and Favre, C., Symétries birationnelles des surfaces feuilletées, J. Reine Angew. Math. 561 (2003), 199235.Google Scholar
[CL10]Cantat, S. and Lamy, S., Normal subgroups in the Cremona group, Preprint (2010), arXiv:1007.0895.Google Scholar
[CMP03]Carlson, J., Müller-Stach, S. and Peters, C., Period mappings and period domains, Cambridge Studies in Advanced Mathematics, vol. 85 (Cambridge University Press, Cambridge, 2003).Google Scholar
[CT89]Carlson, J. and Toledo, D., Harmonic mappings of Kähler manifolds to locally symmetric spaces, Publ. Math. Inst. Hautes Études Sci. (1989), 173201.CrossRefGoogle Scholar
[CS08]Corlette, K. and Simpson, C., On the classification of rank-two representations of quasiprojective fundamental groups, Compositio Math. 144 (2008), 12711331.CrossRefGoogle Scholar
[Delz08]Delzant, T., Trees, valuations and the Green–Lazarsfeld set, Geom. Funct. Anal. 18 (2008), 12361250.CrossRefGoogle Scholar
[Des06]Deserti, J., Groupe de Cremona et dynamique complexe: une approche de la conjecture de Zimmer, Int. Math. Res. Not. IMRN 2006 (2006).Google Scholar
[Des07]Deserti, J., Sur les sous-groupes nilpotents du groupe de Cremona, Bull. Braz. Math. Soc. (N.S.) 38 (2007), 377388.CrossRefGoogle Scholar
[DM08]Diederich, K. and Mazzilli, E., Real and complex analytic sets. The relevance of Segre varieties, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 7 (2008), 447454.Google Scholar
[DU77]Diestel, J. and Uhl, J. J., Vector measures, Mathematical Surveys, vol. 15 (American Mathematical Society, Providence, RI, 1977).CrossRefGoogle Scholar
[DF01]Diller, J. and Favre, C., Dynamics of bimeromorphic maps of surfaces, Amer. J. Math. 123 (2001), 11351169.CrossRefGoogle Scholar
[DZ01]Dolgachev, I. and Zhang, D.-Q., Coble rational surfaces, Amer. J. Math. 123 (2001), 79114.CrossRefGoogle Scholar
[DK90]Donaldson, S. and Kronheimer, P. B., The geometry of four-manifolds, Oxford Mathematical Monographs (The Clarendon Press, Oxford University Press, New York, 1990).CrossRefGoogle Scholar
[Fav10]Favre, C., Le groupe de Cremona et ses sous-groupes de type fini, in Seḿinaire Bourbaki, vol. 2008/2009, Astérisque 332 (2010), Exp. No. 998, 11–43.Google Scholar
[GT01]Gilbarg, D. and Trudinger, N. S., Elliptic partial differential equations of second order, Classics in Mathematics (Springer, Berlin, 2001).CrossRefGoogle Scholar
[Gro93]Gromov, M., Asymptotic invariants of infinite groups, in Geometric group theory, Vol. 2 (Sussex, 1991), London Mathematical Society Lecture Note Series, vol. 182 (Cambridge University Press, Cambridge, 1993).Google Scholar
[GP91]Gromov, M. and Pansu, P., Rigidity of lattices: an introduction, in Geometric topology: recent developments (Montecatini Terme, 1990), Lecture Notes in Mathematics, vol. 1504 (Springer, Berlin, 1991), 39137.CrossRefGoogle Scholar
[GS92]Gromov, M. and Schoen, R., Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one, Publ. Math. Inst. Hautes Études Sci. 76 (1992), 165246.CrossRefGoogle Scholar
[JW77]Johnson, K. D. and Wallach, N. R., Composition series and intertwining operators for the spherical principal series. I, Trans. Amer. Math. Soc. 229 (1977), 137173.CrossRefGoogle Scholar
[JY91]Jost, J. and Yau, S. T., Harmonic maps and group representations, in Differential geometry, Pitman Monograph Surveys Pure Applied Mathematics, vol. 52 (Longman Scientific and Technical, Harlow, 1991), 241259.Google Scholar
[JZ00]Jost, J. and Zuo, K., Harmonic maps into Bruhat–Tits buildings and factorizations ofp-adically unbounded representations of π 1 of algebraic varieties. I, J. Algebra. Geom. 9 (2000), 142.Google Scholar
[Kar53]Karpelevic, F. I., Surfaces of transitivity of a semisimple subgroup of the group of motions of a symmetric space, Soviet. Math. Dokl. 93 (1953), 401404.Google Scholar
[Kli10]Klingler, B., Kaehler groups and duality, Preprint (2010), arXiv:1005.2836.Google Scholar
[KKM11]Klingler, B., Koziarz, V. and Maubon, J., On the second cohomology of Kähler groups, Geom. Funct. Anal. 21 (2011), 419442.CrossRefGoogle Scholar
[Kna01]Knapp, A. W., Representation theory of semisimple groups. An overview based on examples, Princeton Landmarks in Mathematics (Princeton University Press, Princeton, NJ, 2001), reprint of the 1986 original.Google Scholar
[KS71]Knapp, A. W. and Stein, E. M., Intertwining operators for semisimple groups, Ann. of Math. (2) 93 (1971), 489578.CrossRefGoogle Scholar
[KS93]Korevaar, N. and Schoen, R., Sobolev spaces and harmonic maps for metric space targets, Comm. Anal. Geom. 1 (1993), 561659.CrossRefGoogle Scholar
[KS97]Korevaar, N. and Schoen, R., Global existence theorems for harmonic maps to non-locally compact spaces, Comm. Anal. Geom. 5 (1997), 333387.CrossRefGoogle Scholar
[KM58]Koszul, J.-L. and Malgrange, B., Sur certaines structures fibrées complexes, Arch. Math. (Basel) 9 (1958), 102109.CrossRefGoogle Scholar
[KM08]Koziarz, V. and Maubon, J., Harmonic maps and representations of non-uniform lattices of PU(m,1), Ann. Inst. Fourier (Grenoble) 58 (2008), 507558.CrossRefGoogle Scholar
[Man86]Manin, Y., Cubic forms, Algebra, Geometry, Arithmetic, Translated from the Russian by M. Hazewinkel, North-Holland Mathematical Library, vol. 4, second edition (North-Holland, Amsterdam, 1986).Google Scholar
[Mok88]Mok, N., Strong rigidity of irreducible quotients of polydiscs of finite volume, Math. Ann. 282 (1988), 555577.CrossRefGoogle Scholar
[Mok92]Mok, N., Factorization of semisimple discrete representations of Kähler groups, Invent. Math. 110 (1992), 557614.CrossRefGoogle Scholar
[Mos55]Mostow, G. D., Some new decomposition theorems for semisimple groups, Mem. Amer. Math. Soc. 1955 (1955), 3154.Google Scholar
[NR08]Napier, T. and Ramachandran, M., Filtered ends, proper holomorphic mappings of Kähler manifolds to Riemann surfaces and Kähler groups, Geom. Funct. Anal. 17 (2008), 16211654.CrossRefGoogle Scholar
[Nis02]Nishikawa, S., Variational problems in geometry, in Iwanami series in modern mathematics, Translations of Mathematical Monographs, vol. 205 (American Mathematical Society, Providence, RI, 2002).Google Scholar
[Rez02]Reznikov, A., The structure of Kähler groups, I. Second cohomology, in Motives, polylogarithms and Hodge theory, part II (Irvine, CA, 1998), International Press Lecture Series, vol. 3, II (International Press, Sommerville, MA, 2002), 718730.Google Scholar
[Ros56]Rosenlicht, M., Some basic theorems on algebraic groups, Amer. J. Math. 78 (1956), 401443.CrossRefGoogle Scholar
[Sal67]Sally, P. J., Analytic continuation of the irreducible unitary representations of the universal covering group of , Memoirs of the American Mathematical Society, vol. 69 (American Mathematical Society, Providence, RI, 1967).Google Scholar
[Sal70]Sally, P. J., Intertwining operators and the representations of , J. Funct. Anal. 6 (1970), 441453.CrossRefGoogle Scholar
[Sam78]Sampson, J. H., Some properties and applications of harmonic mappings, Ann. Sci. Éc. Norm. Supér. (4) 11 (1978), 211228.CrossRefGoogle Scholar
[Sam86]Sampson, J. H., Applications of harmonic maps to Kähler geometry, in Complex differential geometry and nonlinear differential equations (Brunswick, Maine, 1984), Contemporary Mathematics, vol. 49 (American Mathematical Society, Providence, RI, 1986), 125134.CrossRefGoogle Scholar
[SU87]Schoen, R. and Uhlenbeck, K., A regularity theory for harmonic maps, J. Differential Geom. 17 (1987), 307335.Google Scholar
[Ste70]Stein, E. M., Singular integrals and differentiability properties of functions, Princeton Mathematical Series, vol. 30 (Princeton University Press, Princeton, NJ, 1970).Google Scholar
[Vek62]Vekua, I. N., Generalized analytic functions (Pergamon Press and Addison-Wesley, Reading, MA, 1962).Google Scholar
[Wal71]Wallach, N. R., Application of the higher osculating spaces to the spherical principal series, J. Differential Geom. 5 (1971), 405413.CrossRefGoogle Scholar
[Wei55]Weil, A., On algebraic groups of transformations, Amer. J. Math. 77 (1955), 355391.CrossRefGoogle Scholar
[YiH00]Yi-Hu, Y., On non-kählerianity of non-uniform lattices in SO(n,1) (n≥4), Manuscripta Math. 103 (2000), 401407.Google Scholar
[YiH02]Yi-Hu, Y., Non-kählerianity of non-uniform lattices in SO(3,1), Acta Math. Sin. (Engl. Ser.) 18 (2002), 801802.Google Scholar