Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T22:24:58.922Z Has data issue: false hasContentIssue false

The linkage principle for restricted critical level representations of affine Kac–Moody algebras

Published online by Cambridge University Press:  11 October 2012

Tomoyuki Arakawa
Affiliation:
Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan (email: arakawa@kurims.kyoto-u.ac.jp)
Peter Fiebig
Affiliation:
Department Mathematik, Emmy-Noether-Zentrum, FAU Erlangen-Nürnberg, Cauerstr. 11, D-91058, Germany (email: fiebig@mi.uni-erlangen.de)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the restricted category 𝒪 for an affine Kac–Moody algebra at the critical level. In particular, we prove the first part of the Feigin–Frenkel conjecture: the linkage principle for restricted Verma modules. Moreover, we prove a version of the Bernstein–Gelfand–Gelfand-reciprocity principle and we determine the block decomposition of the restricted category 𝒪. For the proofs, we need a deformed version of the classical structures, so we mostly work in a relative setting.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2012

References

[AJS94]Andersen, H. H., Jantzen, J. C. and Soergel, W., Representations of quantum groups at a pth root of unity and of semisimple groups in characteristic p: independence of p, Astérisque 220 (1994).Google Scholar
[AF12]Arakawa, T. and Fiebig, P., On the restricted Verma modules at the critical level, Trans. Amer. Math. Soc. 364 (2012), 46834712.Google Scholar
[DGK82]Deodhar, V., Gabber, O. and Kac, V., Structure of some categories of representations of infinite-dimensional Lie algebras, Adv. Math. 45 (1982), 92116.Google Scholar
[Fie03]Fiebig, P., Centers and translation functors for category O over symmetrizable Kac–Moody algebras, Math. Z. 243 (2003), 689717.CrossRefGoogle Scholar
[Fie06]Fiebig, P., The combinatorics of category O for symmetrizable Kac–Moody algebras, Transform. Groups 11 (2006), 2949.CrossRefGoogle Scholar
[Fie11]Fiebig, P., On the restricted projective objects in the affine category 𝒪 at the critical level, Preprint (2011), math.RT/1103.1540.Google Scholar
[Fre05]Frenkel, E., Wakimoto modules, opers and the center at the critical level, Adv. Math. 195 (2005), 297404.Google Scholar
[Fre07]Frenkel, E., Langlands correspondence for loop groups, Cambridge Studies in Advanced Mathematics, vol. 103 (Cambridge University Press, Cambridge, 2007).Google Scholar
[FG06]Frenkel, E. and Gaitsgory, D., Local geometric Langlands correspondence and affine Kac–Moody algebras, in Algebraic geometry and number theory, Progress in Mathematics, vol. 253 (Birkhäuser Boston, Boston, MA, 2006), 69260.Google Scholar
[Hay88]Hayashi, T., Sugawara operators and Kac–Kazhdan conjecture, Invent. Math. 94 (1988), 1352.CrossRefGoogle Scholar
[Kac90]Kac, V., Infinite dimensional Lie algebras, third edition (Cambridge University Press, Cambridge, 1990).CrossRefGoogle Scholar
[KK79]Kac, V. and Kazhdan, D., Structure of representations with highest weight of infinite-dimensional Lie algebras, Adv. Math. 34 (1979), 97108.Google Scholar
[Lus91]Lusztig, G., Intersection cohomology methods in representation theory, in Proc. Internat. Congr. Math. Kyoto 1990, I, ed. Satake, I. (Springer, 1991), 155174.Google Scholar
[RW82]Rocha-Caridi, A. and Wallach, N. R., Projective modules over graded Lie algebras, Math. Z. 180 (1982), 151177.CrossRefGoogle Scholar