Published online by Cambridge University Press: 16 June 2014
We prove modularity of some two-dimensional, $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}2$-adic Galois representations over a totally real field that are nearly ordinary at all places above $2$ and that are residually dihedral. We do this by employing the strategy of Skinner and Wiles, using Hida families, together with the $2$-adic patching method of Khare and Wintenberger. As an application we deduce modularity of some elliptic curves over totally real fields that have good ordinary or multiplicative reduction at places above $2$.