Article contents
Non-normal abelian covers
Published online by Cambridge University Press: 20 March 2012
Abstract
An abelian cover is a finite morphism X→Y of varieties which is the quotient map for a generically faithful action of a finite abelian group G. Abelian covers with Y smooth and X normal were studied in [R. Pardini, Abelian covers of algebraic varieties, J. Reine Angew. Math. 417 (1991), 191–213; MR 1103912(92g:14012)]. Here we study the non-normal case, assuming that X and Y are S2 varieties that have at worst normal crossings outside a subset of codimension greater than or equal to two. Special attention is paid to the case of ℤr2-covers of surfaces, which is used in [V. Alexeev and R. Pardini, Explicit compactifications of moduli spaces of Campedelli and Burniat surfaces, Preprint (2009), math.AG/arXiv:0901.4431] to construct explicitly compactifications of some components of the moduli space of surfaces of general type.
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright © Foundation Compositio Mathematica 2012
References
- 12
- Cited by