Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T12:23:14.412Z Has data issue: false hasContentIssue false

On a classification of irreducible admissible modulo $p$ representations of a $p$-adic split reductive group

Part of: Lie groups

Published online by Cambridge University Press:  09 October 2013

Noriyuki Abe*
Affiliation:
Creative Research Institution (CRIS), Hokkaido University, N21, W10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan email abenori@math.sci.hokudai.ac.jp

Abstract

We give a classification of irreducible admissible modulo $p$ representations of a split$p$-adic reductive group in terms of supersingular representations. This is a generalization of a theorem of Herzig.

Type
Research Article
Copyright
© The Author(s) 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barthel, L. and Livné, R., Irreducible modular representations of ${\mathrm{GL} }_{2} $ of a local field, Duke Math. J. 75 (1994), 261292.Google Scholar
Barthel, L. and Livné, R., Modular representations of ${\mathrm{GL} }_{2} $ of a local field: the ordinary, unramified case, J. Number Theory 55 (1995), 127.Google Scholar
Bernšteĭn, I. N. and Zelevinskiĭ, A. V., Representations of the group $\mathrm{GL} (n, F)$, where $F$ is a local non-Archimedean field, Uspekhi Mat. Nauk 31 (1976), 570.Google Scholar
Bourbaki, N., Lie groups and Lie algebras. Chapters 4–6, Elements of Mathematics (Springer, Berlin, 2002), translated from the 1968 French original by Andrew Pressley.CrossRefGoogle Scholar
Breuil, C., Sur quelques représentations modulaires et $p$-adiques de ${\mathrm{GL} }_{2} ({\mathbf{Q} }_{p} )$. I, Compositio Math. 138 (2003), 165188.Google Scholar
Breuil, C. and Paškūnas, V., Towards a modulo $p$ Langlands correspondence for ${\mathrm{GL} }_{2} $, Mem. Amer. Math. Soc. 216 (2012).Google Scholar
Chriss, N. and Ginzburg, V., Representation theory and complex geometry (Birkhäuser, Boston, MA, 1997).Google Scholar
Deodhar, V. V., Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative Möbius function, Invent. Math. 39 (1977), 187198.Google Scholar
Emerton, M., Ordinary parts of admissible representations of $p$-adic reductive groups I. Definition and first properties, Astérisque (2010), 355402.Google Scholar
Große-Klönne, E., On special representations of p-adic reductive groups, Preprint, available at http://www.math.hu-berlin.de/~zyska/Grosse-Kloenne/spec.pdf.Google Scholar
Haines, G. and Rapoport, M., On parahoric subgroups, appendix to twisted loop groups and their affine flag varieties, Adv. Math. 219 (2008), 188198.CrossRefGoogle Scholar
Herzig, F., The classification of irreducible admissible mod $p$ representations of a $p$-adic ${\mathrm{GL} }_{n} $, Invent. Math. 186 (2011), 373434.Google Scholar
Herzig, F., A Satake isomorphism in characteristic $p$, Compositio Math. 147 (2011), 263283.Google Scholar
Humphreys, J. E., Modular representations of finite groups of Lie type, London Mathematical Society Lecture Note Series, vol. 326 (Cambridge University Press, Cambridge, 2006).Google Scholar
Henniart, G. and Vigneras, M.-F., Comparison of compact induction with parabolic induction, Pacific J. Math. 260 (2012), 457495.Google Scholar
Ollivier, R., Critère d’irréductibilité pour les séries principales de ${\mathrm{GL} }_{n} (F)$ en caractéristique $p$, J. Algebra 304 (2006), 3972.CrossRefGoogle Scholar
Vignéras, M.-F., Série principale modulo $p$ de groupes réductifs $p$-adiques, Geom. Funct. Anal. 17 (2008), 20902112.Google Scholar