Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T07:22:47.627Z Has data issue: false hasContentIssue false

On an exotic Lagrangian torus in $\mathbb{C}P^{2}$

Published online by Cambridge University Press:  27 February 2015

Weiwei Wu*
Affiliation:
Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA email wwwu@math.msu.edu

Abstract

We find a non-displaceable Lagrangian torus fiber in a semi-toric system which is superheavy with respect to a certain symplectic quasi-state. The proof employs both 4-dimensional techniques and those from symplectic field theory. In particular, our result implies Lagrangian $\mathbb{R}P^{2}$ is not a stem in $\mathbb{C}P^{2}$, answering a question of Entov and Polterovich.

Type
Research Article
Copyright
© The Author 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abouzaid, M., Fukaya, K., Oh, Y.-G., Ohta, H. and Ono, K., Quantum cohomology and split generation in Lagrangian Floer theory, in preparation.Google Scholar
Albers, P. and Frauenfelder, U., A nondisplaceable Lagrangian torus in T S 2, Comm. Pure Appl. Math. 61 (2008), 10461051.CrossRefGoogle Scholar
Biran, P., Lagrangian barriers and symplectic embeddings, Geom. Funct. Anal. 11 (2001), 407464.CrossRefGoogle Scholar
Biran, P. and Cornea, O., Rigidity and uniruling for Lagrangian submanifolds, Geom. Topol. 13 (2009), 28812989.CrossRefGoogle Scholar
Bourgeois, F., Eliashberg, Y., Hofer, H., Wysocki, K. and Zehnder, E., Compactness results in symplectic field theory, Geom. Topol. 7 (2003), 799888.CrossRefGoogle Scholar
Chekanov, Y. and Schlenk, F., Notes on monotone Lagrangian twist tori, Preprint (2010),arXiv:1003.5960.Google Scholar
Cho, C.-H. and Oh, Y.-G., Floer cohomology and disc instantons of Lagrangian torus fibers in Fano toric manifolds, Asian J. Math. 10 (2006), 773814.CrossRefGoogle Scholar
Chriss, N. and Ginzburg, V., Representation theory and complex geometry (Birkhäuser, Boston, MA, 1997).Google Scholar
Dorfmeister, J. G., Minimality of symplectic fiber sums along spheres, Asian J. Math. 17 (2013), 423442.CrossRefGoogle Scholar
Eliashberg, Y., Givental, A. and Hofer, H., Introduction to symplectic field theory GAFA 2000 (Tel Aviv, 1999), Geom. Funct. Anal (2000), 560673; Special Volume, Part II.Google Scholar
Eliashberg, Y. and Polterovich, L., Symplectic quasi-states on the quadric surface and Lagrangian submanifolds, Preprint (2010), arXiv:1006.2501.Google Scholar
Entov, M., Quasi-morphisms and quasi-states in symplectic topology, Preprint (2014),arXiv:1404.6408.Google Scholar
Entov, M. and Polterovich, L., Calabi quasimorphism and quantum homology, Int. Math. Res. Not. IMRN 2003 (2003), 16351676.CrossRefGoogle Scholar
Entov, M. and Polterovich, L., Quasi-states and symplectic intersections, Comment. Math. Helv. 81 (2006), 7599.CrossRefGoogle Scholar
Entov, M. and Polterovich, L., Symplectic quasi-states and semi-simplicity of quantum homology, in Toric topology, Contemporary Mathematics, vol. 460 (American Mathematical Society, Providence, RI, 2008), 4770; English summary.CrossRefGoogle Scholar
Entov, M. and Polterovich, L., Rigid subsets of symplectic manifolds, Compos. Math. 145 (2009), 773826.CrossRefGoogle Scholar
Evans, J. D., Lagrangian spheres in Del Pezzo surfaces, J. Topol. 3 (2010), 181227.CrossRefGoogle Scholar
Evans, J. D., Symplectic topology of some Stein and rational surfaces, PhD thesis, University of Cambridge (2010).Google Scholar
Fukaya, K., Oh, Y.-G., Ohta, H. and Ono, K., Lagrangian intersection Floer theory: anomaly and obstruction, AMS/IP Studies in Advanced Mathematics, vol. 46 (American Mathematical Society, Providence, RI, 2009).Google Scholar
Fukaya, K., Oh, Y.-G., Ohta, H. and Ono, K., Lagrangian Floer theory on compact toric manifolds I, Duke Math. J. 151 (2010), 2374.CrossRefGoogle Scholar
Fukaya, K., Oh, Y.-G., Ohta, H. and Ono, K., Lagrangian Floer theory on compact toric manifolds: survey, Preprint (2010), arXiv:1011.4044.Google Scholar
Fukaya, K., Oh, Y.-G., Ohta, H. and Ono, K., Lagrangian Floer theory on compact toric manifolds II: bulk deformations, Selecta Math. (N.S.) 17 (2011), 609711.CrossRefGoogle Scholar
Fukaya, K., Oh, Y.-G., Ohta, H. and Ono, K., Spectral invariants with bulk, quasimorphisms and Lagrangian Floer theory, Preprint (2011), arXiv:1105.5123.Google Scholar
Fukaya, K., Oh, Y.-G., Ohta, H. and Ono, K., Toric degeneration and non-displaceable Lagrangian tori in S 2 × S 2, Int. Math. Res. Not. IMRN 2012 (2012), 29422993.CrossRefGoogle Scholar
Hind, R., Lagrangian spheres in S 2 × S 2, Geom. Funct. Anal. 14 (2004), 303318.CrossRefGoogle Scholar
Hofer, H., Wysocki, K. and Zehnder, E., Properties of pseudo-holomorphic curves in symplectisations. II. Embedding controls and algebraic invariants, Geom. Funct. Anal. 5 (1995), 270328.CrossRefGoogle Scholar
Lerman, E., Symplectic cuts, Math. Res. Lett. 2 (1995), 247258.CrossRefGoogle Scholar
Li, A.-M. and Ruan, Y., Symplectic surgery and Gromov–Witten invariants of Calabi–Yau 3-folds, Invent. Math. 145 (2001), 151218.CrossRefGoogle Scholar
Li, T.-J. and Wu, W., Lagrangian spheres, symplectic surfaces and the symplectic mapping class group, Geom. Topol. 16 (2012), 11211169.CrossRefGoogle Scholar
McDuff, D., The structure of rational and ruled symplectic 4-manifolds, J. Amer. Math. Soc. 3 (1990), 679712.CrossRefGoogle Scholar
McDuff, D. and Salamon, D., J-holomorphic curves and symplectic topology, American Mathematical Society Colloquium Publications, vol. 52 (American Mathematical Society, Providence, RI, 2004).CrossRefGoogle Scholar
Oakley, J. and Usher, M., On certain Lagrangian submanifolds of $S^{2}\times S^{2}$and $\mathbb{C}P^{n}$, Preprint (2013), arXiv:1311.5152.Google Scholar
Seidel, P., Symplectic automorphisms of $T^{\ast }S^{2}$, Preprint (1998), arXiv:math/9803084.Google Scholar
Vianna, R., On exotic Lagrangian tori in $\mathbb{C}P^{2}$, Preprint (2013), arXiv:1305.7512.Google Scholar
Wendl, C., Automatic transversality and orbifolds of punctured holomorphic curves in dimension four, Comment. Math. Helv. 85 (2010), 347407.CrossRefGoogle Scholar