Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T12:43:09.371Z Has data issue: false hasContentIssue false

On descending cohomology geometrically

Published online by Cambridge University Press:  10 May 2017

Jeffrey D. Achter
Affiliation:
Department of Mathematics, Colorado State University, Fort Collins, CO 80523, USA email j.achter@colostate.edu
Sebastian Casalaina-Martin
Affiliation:
Department of Mathematics, University of Colorado, Campus Box 395, Boulder, CO 80309, USA email casa@math.colorado.edu
Charles Vial
Affiliation:
DPMMS, University of Cambridge, Cambridge CB3 0WB, UK email vial@math.uni-bielefeld.de Current address:Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany

Abstract

In this paper, motivated by a problem posed by Barry Mazur, we show that for smooth projective varieties over the rationals, the odd cohomology groups of degree less than or equal to the dimension can be modeled by the cohomology of an abelian variety, provided the geometric coniveau is maximal. This provides an affirmative answer to Mazur’s question for all uni-ruled threefolds, for instance. Concerning cohomology in degree three, we show that the image of the Abel–Jacobi map admits a distinguished model over the rationals.

Type
Research Article
Copyright
© The Authors 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achter, J., Casalaina-Martin, S. and Vial, Ch., Parameter spaces for algebraic equivalence, Preprint (2016), arXiv:1610.06586.Google Scholar
André, Y., Une introduction aux motifs (motifs purs, motifs mixtes, périodes), Panoramas et Synthèses [Panoramas and Syntheses], vol. 17 (Société Mathématique de France, Paris, 2004); MR 2115000 (2005k:14041).Google Scholar
Beauville, A., Variétés de Prym et jacobiennes intermédiaires , Ann. Sci. Éc. Norm. Supér. (4) 10 (1977), 309391; MR 0472843 (57 #12532).Google Scholar
Bloch, S., Torsion algebraic cycles and a theorem of Roitman , Compositio Math. 39 (1979), 107127; MR 539002 (80k:14012).Google Scholar
Bloch, S., Lectures on algebraic cycles, New Mathematical Monographs, vol. 16, second edition (Cambridge University Press, Cambridge, 2010); MR 2723320 (2011h:14009).Google Scholar
Bloch, S. and Srinivas, V., Remarks on correspondences and algebraic cycles , Amer. J. Math. 105 (1983), 12351253; MR 714776 (85i:14002).Google Scholar
Bosch, S., Lütkebohmert, W. and Raynaud, M., Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21 (Springer, Berlin, 1990); MR 1045822 (91i:14034).Google Scholar
Conrad, B., Chow’s K/k-image and K/k-trace, and the Lang–Néron theorem , Enseign. Math. (2) 52 (2006), 37108; MR 2255529 (2007e:14068).Google Scholar
Deligne, P., Les intersections complètes de niveau de Hodge un , Invent. Math. 15 (1972), 237250; MR MR0301029 (46 #189).CrossRefGoogle Scholar
Deligne, P., La conjecture de Weil. II , Publ. Math. Inst. Hautes Études Sci. 52 (1980), 137252; MR 601520 (83c:14017).CrossRefGoogle Scholar
Deligne, P., Hodge cycles on abelian varieties (notes by J. Milne) , in Hodge cycles, motives, and Shimura varieties, Lecture Notes in Mathematics, vol. 900, eds Deligne, P., Milne, J. S., Ogus, A. and Shih, K.-Y. (Springer, Berlin–New York, 1982); MR 654325 (84m:14046).CrossRefGoogle Scholar
Faltings, G., Endlichkeitssätze für abelsche Varietäten über Zahlkörpern , Invent. Math. 73 (1983), 349366; MR 718935 (85g:11026a).CrossRefGoogle Scholar
Faltings, G., Wüstholz, G., Grunewald, F., Schappacher, N. and Stuhler, U., Rational points, Aspects of Mathematics, vol. E6, third edition (Vieweg, Braunschweig, 1992); papers from the seminar held at the Max-Planck-Institut für Mathematik, Bonn/Wuppertal, 1983–1984, with an appendix by G. Wüstholz; MR 1175627 (93k:11060).Google Scholar
Friedlander, E. M., Algebraic cycles, Chow varieties, and Lawson homology , Compositio Math. 77 (1991), 5593; MR 1091892 (92a:14005).Google Scholar
Fulton, W., Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, second edition (Springer, Berlin, 1998); MR 1644323 (99d:14003).Google Scholar
Gabber, O., Sur la torsion dans la cohomologie l-adique d’une variété , C. R. Math. Acad. Sci. Paris Sér. I 297 (1983), 179182; MR 725400 (85f:14018).Google Scholar
Görtz, U. and Wedhorn, T., Algebraic geometry I, Advanced Lectures in Mathematics (Vieweg–Teubner, Wiesbaden, 2010); schemes with examples and exercises; MR 2675155 (2011f:14001).CrossRefGoogle Scholar
Grothendieck, A., Le groupe de Brauer. III. Exemples et compléments, Dix Exposés sur la Cohomologie des Schémas (North-Holland–Masson, Amsterdam–Paris, 1968), 88188; MR 0244271 (39 #5586c).Google Scholar
Honda, T., Isogeny classes of abelian varieties over finite fields , J. Math. Soc. Japan 20 (1968), 8395; MR 0229642 (37 #5216).Google Scholar
Illusie, L., Miscellany on traces in -adic cohomology: a survey , Jpn. J. Math. 1 (2006), 107136; MR 2261063 (2007g:14016).Google Scholar
Jannsen, U., Motivic sheaves and filtrations on Chow groups , in Motives (Seattle, WA, 1991), Proceedings of Symposia in Pure Mathematics, vol. 55 (American Mathematical Society, Providence, RI, 1994), 245302; MR 1265533 (95c:14006).Google Scholar
Kleiman, S. L., Algebraic cycles and the Weil conjectures, Dix Exposés sur la Cohomologie des Schémas (North-Holland–Masson, Amsterdam–Paris, 1968), 359386; MR 0292838 (45 #1920).Google Scholar
Kollár, J., Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32 (Springer, Berlin, 1996); MR 1440180 (98c:14001).CrossRefGoogle Scholar
Lecomte, F., Rigidité des groupes de Chow , Duke Math. J. 53 (1986), 405426; MR 850543 (88c:14013).CrossRefGoogle Scholar
Mazur, B., Frobenius and the Hodge filtration , Bull. Amer. Math. Soc. 78 (1972), 653667; MR 0330169 (48 #8507).Google Scholar
Mazur, B., Open problems: descending cohomology, geometrically , Not. Int. Congr. Chinese Mathematicians 2 (2014), 3740.Google Scholar
Milne, J. S., Motives over finite fields , in Motives (Seattle, WA, 1991), Proceedings of Symposia in Pure Mathematics, vol. 55 (American Mathematical Society, Providence, RI, 1994), 401459; MR 1265538 (95g:11053).Google Scholar
Milne, J. S., Algebraic geometry, v6.00 (2014), available at www.jmilne.org/math/, p. 223.Google Scholar
Mochizuki, S., Topics in absolute anabelian geometry I: generalities , J. Math. Sci. Univ. Tokyo 19 (2012), 139242; MR 2987306.Google Scholar
Murre, J. P., Applications of algebraic K-theory to the theory of algebraic cycles , in Algebraic geometry, Sitges (Barcelona), 1983, Lecture Notes in Mathematics, vol. 1124 (Springer, Berlin, 1985), 216261; MR 805336 (87a:14006).Google Scholar
Poonen, B., Bertini theorems over finite fields , Ann. of Math. (2) 160 (2004), 10991127; MR 2144974 (2006a:14035).CrossRefGoogle Scholar
Saito, H., Abelian varieties attached to cycles of intermediate dimension , Nagoya Math. J. 75 (1979), 95119; MR 542191 (81a:14021).Google Scholar
Samuel, P., Relations d’équivalence en géométrie algébrique, Proc. Int. Congr. Mathematicians, 1958 (Cambridge University Press, New York, 1960), 470487; MR 0116010.Google Scholar
Tankeev, S. G., Abelian varieties and the general Hodge conjecture , Izv. Ross. Akad. Nauk Ser. Mat. 57 (1993), 192206; MR 1243359 (95j:14011).Google Scholar
Tate, J., Endomorphisms of abelian varieties over finite fields , Invent. Math. 2 (1966), 134144; MR 0206004 (34 #5829).CrossRefGoogle Scholar
Tate, J., Classes d’isogénie des variétés abéliennes sur un corps fini (d’après T. Honda) , in Séminaire Bourbaki, Vol. 1968/69: Exposés 347–363, Lecture Notes in Mathematics, vol. 175 (Springer, Berlin, 1971); Exposé 352, 95–110; MR 3077121.Google Scholar
Vial, C., Remarks on motives of abelian type , Tohoku Math. J., in press.Google Scholar
Vial, C., Niveau and coniveau filtrations on cohomology groups and Chow groups , Proc. Lond. Math. Soc. (3) 106 (2013), 410444; MR 3021467.CrossRefGoogle Scholar
Voisin, C., Remarks on filtrations on Chow groups and the Bloch conjecture , Ann. Mat. Pura Appl. (4) 183 (2004), 421438; MR 2082666.Google Scholar
Voisin, C., Hodge theory and complex algebraic geometry. I, Cambridge Studies in Advanced Mathematics, vol. 76, english edition (Cambridge University Press, Cambridge, 2007); translated from the French by Leila Schneps; MR 2451566 (2009j:32014).Google Scholar
Voisin, C., Abel–Jacobi map, integral Hodge classes and decomposition of the diagonal , J. Algebraic Geom. 22 (2013), 141174; MR 2993050.Google Scholar
Voisin, C., Chow rings, decomposition of the diagonal, and the topology of families, Annals of Mathematics Studies, vol. 187 (Princeton University Press, Princeton, NJ, 2014); MR 3186044.Google Scholar
Voisin, C., Unirational threefolds with no universal codimension 2 cycle , Invent. Math. 201 (2015), 207237; MR 3359052.Google Scholar
Volkov, M., A class of p-adic Galois representations arising from abelian varieties over ℚ p , Math. Ann. 331 (2005), 889923; MR 2148801 (2006a:14027).Google Scholar
Weil, A., Sur les critères d’équivalence en géométrie algébrique , Math. Ann. 128 (1954), 95127; MR 0065219 (16,398e).Google Scholar
Zarhin, Ju. G., Endomorphisms of Abelian varieties over fields of finite characteristic , Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), 272277, 471; MR 0371897 (51 #8114).Google Scholar
Zarhin, Y. G., Homomorphisms of abelian varieties over finite fields , in Higher-dimensional geometry over finite fields, NATO Science for Peace and Security Series D: Information and Communication Security, vol. 16 (IOS, Amsterdam, 2008), 315343; MR 2484084 (2010a:11117).Google Scholar