Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T16:28:35.918Z Has data issue: false hasContentIssue false

On the birational p-adic section conjecture

Published online by Cambridge University Press:  18 March 2010

Florian Pop*
Affiliation:
Department of Mathematics, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104, USA (email: pop@math.upenn.edu)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this article we introduce and prove a ℤ/p meta-abelian form of the birationalp-adic section conjecture for curves. This is a much stronger result than the usual p-adic birational section conjecture for curves, and makes an effective p-adic section conjecture for curves quite plausible.

MSC classification

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2010

References

[1]Ax, J. and Kochen, S., Diophantine problems over local fields: III. Decidable fields, Ann. of Math. (2) 83 (1966), 437456.CrossRefGoogle Scholar
[2]Faltings, G., Curves and their fundamental groups (following Grothendieck, Tamagawa and Mochizuki), Astérisque 252 (1998), 131150, Exposé 840.Google Scholar
[3]Grothendieck, A., Letter to Faltings (June 1983), in Geometric Galois actions 1, London Mathematical Society Lecture Note Series, vol. 242 (Cambridge University Press, Cambridge, 1998), 548. See SL98 below.Google Scholar
[4]Grothendieck, A., Esquisse d’un programme (1984), in Geometric Galois actions 1, London Mathematical Society Lecture Note Series, vol. 242 (Cambridge University Press, Cambridge, 1998), 4958. See SL98 below.Google Scholar
[5]Koenigsmann, J., On the ‘section conjecture’ in anabelian geometry, J. Reine Angew. Math. 588 (2005), 221235.CrossRefGoogle Scholar
[6]Lichtenbaum, S., Duality theorems for curves over p-adic fields, Invent. Math. 7 (1969), 120136.CrossRefGoogle Scholar
[7]Neukirch, J., Schmidt, A. and Wingberg, K., Cohomology of number fields, Grundlehren der mathematischen Wissenschaften, vol. 323, second edition (Springer, Berlin, 2008).CrossRefGoogle Scholar
[8]Pop, F., Galoissche Kennzeichnung p-adisch abgeschlossener Körper, J. Reine Angew. Math. 392 (1988), 145175.Google Scholar
[9]Prestel, A. and Roquette, P., Formally p-adic fields, Lecture Notes in Mathematics, vol. 1050 (Springer, Berlin, 1985).Google Scholar
[10]Roquette, P., Splitting of algebras by function fields of one variable, Nagoya Math. J. 27 (1966), 625642.CrossRefGoogle Scholar
[11]Schneps, L. and Lochak (eds), P., Geometric Galois actions 1, London Mathematical Society Lecture Note Series, vol. 242 (Cambridge University Press, Cambridge, 1998).Google Scholar
[12]Serre, J.-P., Cohomologie galoisienne, Lecture Notes in Mathematics, vol. 5 (Springer, Berlin, 1965).CrossRefGoogle Scholar
[13]Szamuely, T., Groupes de Galois de corps de type fini, Astérisque 294 (2004), 403431.Google Scholar
[14]Tate, J., Cohomology of abelian varieties over p-adic fields, Notes by Serge Lang, Princeton University (May 1959).Google Scholar