Hostname: page-component-76c49bb84f-ndtt8 Total loading time: 0 Render date: 2025-07-14T00:10:32.679Z Has data issue: false hasContentIssue false

Overconvergence of étale $(\varphi,\Gamma)$-modules in families

Published online by Cambridge University Press:  10 July 2025

Gal Porat*
Affiliation:
The Hebrew University, Jerusalem, 9190401, Israel galporat1@gmail.com

Abstract

We prove a conjecture of Emerton, Gee and Hellmann concerning the overconvergence of étale $(\varphi,\Gamma)$-modules in families parametrized by topologically finite-type $\mathbf{Z}_{p}$-algebras. As a consequence, we deduce the existence of a natural map from the rigid fiber of the Emerton–Gee stack to the rigid analytic stack of $(\varphi,\Gamma)$-modules.

Information

Type
Research Article
Copyright
© The Author(s), 2025. The publishing rights in this article are licensed to Foundation Compositio Mathematica under an exclusive licence.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bellovin, R., Galois representations over pseudorigid spaces, Preprint (2020), https://arxiv.org/abs/2002.06687arXiv:2002.06687.Google Scholar
Berger, L., Équations différentielles p-adiques et $(\varphi,N)$ -modules filtrés, Astérisque 319 (2008), 1338.Google Scholar
Berger, L. and Colmez, P., Familles de représentations de de Rham et monodromie p-adique, Astérisque 319 (2008), 303337.Google Scholar
Chenevier, G., Une application des variétés de Hecke des groupes unitaires, Preprint (2009), http://www.math.polytechnique.fr/~chenevier/articles/.Google Scholar
Cherbonnier, F. and Colmez, P., Représentations p-adiques surconvergentes , Invent. Math. 133 (1998), 581611.CrossRefGoogle Scholar
Colmez, P., Théorie d’Iwasawa des représentations de de Rham d’un corps local, Ann. of Math. (2) 148 (1998), 485–571.CrossRefGoogle Scholar
Colmez, P., Espaces Vectoriels de dimension finie et représentations de de Rham, Astérisque 319 (2008), 117186.Google Scholar
de Shalit, E. and Porat, G., Induction and restriction of $(\varphi,\Gamma)$ -modules, Münster J. Math. 12 (2019), 215237.Google Scholar
Emerton, M. and Gee, T., Moduli stacks of étale ( ${\phi}, \Gamma$ )-modules and the existence of crystalline lifts, Preprint (2019), arXiv:1908.07185.Google Scholar
Emerton, M. and Gee, T., “Scheme-theoretic images” of certain morphisms of stacks, Algebr. Geom. 8 (2021), 1–132.Google Scholar
Emerton, M., Gee, T. and Hellmann, E., An introduction to the categorical p-adic Langlands program, in Notes for the IHES summer school on the Langlands program (2022).Google Scholar
Gao, H., Wach models and overconvergence of étale $(\varphi,\Gamma)$ -modules, J. Number Theory 205 (2019), 277299.CrossRefGoogle Scholar
Kedlaya, K. and Liu, R., On families of $(\varphi,\Gamma)$ -modules, Algebra Number Theory 7 (2011), 943967.Google Scholar
The Stacks Project Authors, Stacks Project (2018), http://stacks.math.columbia.edu.Google Scholar