Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T09:26:47.618Z Has data issue: false hasContentIssue false

Patching and the $p$ -adic Langlands program for $\operatorname{GL}_{2}(\mathbb{Q}_{p})$

Published online by Cambridge University Press:  01 December 2017

Ana Caraiani
Affiliation:
Department of Mathematics, Imperial College London, London SW7 2AZ, UK email a.caraiani@imperial.ac.uk
Matthew Emerton
Affiliation:
Department of Mathematics, University of Chicago, 5734 S. University Ave., Chicago, IL 60637, USA email emerton@math.uchicago.edu
Toby Gee
Affiliation:
Department of Mathematics, Imperial College London, London SW7 2AZ, UK email toby.gee@imperial.ac.uk
David Geraghty
Affiliation:
Department of Mathematics, 301 Carney Hall, Boston College, Chestnut Hill, MA 02467, USA email david.geraghty@bc.edu
Vytautas Paškūnas
Affiliation:
Fakultät für Mathematik, Universität Duisburg-Essen, 45117 Essen, Germany email paskunas@uni-due.de
Sug Woo Shin
Affiliation:
Department of Mathematics, UC Berkeley, Berkeley, CA 94720, USA email sug.woo.shin@berkeley.edu Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722, Republic of Korea

Abstract

We present a new construction of the $p$ -adic local Langlands correspondence for $\operatorname{GL}_{2}(\mathbb{Q}_{p})$ via the patching method of Taylor–Wiles and Kisin. This construction sheds light on the relationship between the various other approaches to both the local and the global aspects of the $p$ -adic Langlands program; in particular, it gives a new proof of many cases of the second author’s local–global compatibility theorem and relaxes a hypothesis on the local mod  $p$ representation in that theorem.

Type
Research Article
Copyright
© The Authors 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnet-Lamb, T., Gee, T., Geraghty, D. and Taylor, R., Potential automorphy and change of weight , Ann. of Math. (2) 179 (2014), 501609.Google Scholar
Barthel, L. and Livné, R., Irreducible modular representations of GL2 of a local field , Duke Math. J. 75 (1994), 261292.Google Scholar
Berger, L., Représentations modulaires de GL2(Q p ) et représentations galoisiennes de dimension 2 , Astérisque 331 (2010), 263279.Google Scholar
Berger, L. and Breuil, C., Sur quelques représentations potentiellement cristallines de GL2(Q p ) , Astérisque 330 (2010), 155211.Google Scholar
Berger, L., Li, H. and Zhu, H. J., Construction of some families of 2-dimensional crystalline representations , Math. Ann. 329 (2004), 365377.Google Scholar
Breuil, C., Sur quelques représentations modulaires et p-adiques de GL2(Q p ). I , Compos. Math. 138 (2003), 165188.Google Scholar
Breuil, C., Sur quelques représentations modulaires et p-adiques de GL2(Q p ). II , J. Inst. Math. Jussieu 2 (2003), 2358.Google Scholar
Breuil, C., Introduction générale [Représentations p-adiques de groupes p-adiques. I. Représentations galoisiennes et (𝜙, 𝛤)-modules] , Astérisque 319 (2008), 112.Google Scholar
Breuil, C. and Emerton, M., Représentations p-adiques ordinaires de GL2(Q p ) et compatibilité local–global , Astérisque 331 (2010), 255315.Google Scholar
Breuil, C. and Paškūnas, V., Towards a modulo p Langlands correspondence for GL2 , Mem. Amer. Math. Soc. 216 (2012).Google Scholar
Brumer, A., Pseudocompact algebras, profinite groups and class formations , J. Algebra 4 (1966), 442470.CrossRefGoogle Scholar
Buzzard, K., Diamond, F. and Jarvis, F., On Serre’s conjecture for mod l Galois representations over totally real fields , Duke Math. J. 155 (2010), 105161.Google Scholar
Calegari, F. and Emerton, M., Completed cohomology—a survey , in Non-abelian fundamental groups and Iwasawa theory, London Mathematical Society Lecture Note Series, vol. 393 (Cambridge University Press, Cambridge, 2012), 239257.Google Scholar
Caraiani, A., Emerton, M., Gee, T., Geraghty, D., Paškūnas, V. and Shin, S. W., Patching and the p-adic local Langlands correspondence , Cambridge J. Math. 4 (2016), 197287.Google Scholar
Carayol, H., Formes modulaires et représentations galoisiennes à valeurs dans un anneau local complet , in p-adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991), Contemporary Mathematics, vol. 165 (American Mathematical Society, Providence, RI, 1994), 213237.Google Scholar
Chenevier, G., The p-adic analytic space of pseudocharacters of a profinite group, and pseudorepresentations over arbitrary rings , in Proceedings of the LMS Durham Symposium 2011, Automorphic Forms and Galois Representations, Vol. 1, London Mathematical Society Lecture Notes Series, vol. 414 (Cambridge University Press, Cambridge, 2014), 221285.Google Scholar
Clozel, L., Harris, M. and Taylor, R., Automorphy for some l-adic lifts of automorphic mod l Galois representations , Publ. Math. Inst. Hautes Études Sci. 108 (2008), 1181.Google Scholar
Colmez, P., Introduction. [Représentations p-adiques de groupes p-adiques. II. Représentations de GL2(Q p ) et (𝜙, 𝛤)-modules] , Astérisque 330 (2010), xixxiii.Google Scholar
Colmez, P., Représentations de GL2(Q p ) et (𝜙, 𝛤)-modules , Astérisque 330 (2010), 281509.Google Scholar
Colmez, P., Dospinescu, G. and Paškūnas, V., The p-adic local Langlands correspondence for GL2(ℚ p ) , Cambridge J. Math. 2 (2014), 147.Google Scholar
Conrad, B., Diamond, F. and Taylor, R., Modularity of certain potentially Barsotti–Tate Galois representations , J. Amer. Math. Soc. 12 (1999), 521567.Google Scholar
de Jong, A. J., Crystalline Dieudonné module theory via formal and rigid geometry , Publ. Math. Inst. Hautes Études Sci. 82 (1995), 596.Google Scholar
Emerton, M., Ordinary parts of admissible representations of p-adic reductive groups I. Definition and first properties , Astérisque 331 (2010), 355402.Google Scholar
Emerton, M., Local–global compatibility in the  $p$ -adic Langlands programme for  $\operatorname{GL}_{2}/\mathbb{Q}$ , Preprint (2011), http://www.math.uchicago.edu/∼emerton/preprints.html.Google Scholar
Emerton, M., Gee, T. and Savitt, D., Lattices in the cohomology of Shimura curves , Invent. Math. 200 (2015), 196.Google Scholar
Emerton, M. and Helm, D., The local Langlands correspondence for GL n in families , Ann. Sci. Éc. Norm. Supér. (4) 47 (2014), 655722.Google Scholar
Fontaine, J.-M. and Mazur, B., Geometric Galois representations , in Elliptic curves, modular forms, & Fermat’s last theorem (Hong Kong, 1993), Series on Number Theory, vol. I (International Press, Cambridge, MA, 1995), 4178.Google Scholar
Gee, T. and Kisin, M., The Breuil–Mézard conjecture for potentially Barsotti–Tate representations , Forum Math., Pi 2 (2014), e1, 56 pp.Google Scholar
Gee, T. and Newton, J., Patching and the completed homology of locally symmetric spaces, Preprint (2016), arXiv:1609.06965.Google Scholar
Harris, M. and Taylor, R., The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151 (Princeton University Press, Princeton, NJ, 2001); with an appendix by Vladimir G. Berkovich.Google Scholar
Kisin, M., Potentially semi-stable deformation rings , J. Amer. Math. Soc. 21 (2008), 513546.Google Scholar
Kisin, M., The Fontaine–Mazur conjecture for GL2 , J. Amer. Math. Soc. 22 (2009), 641690.Google Scholar
Matsumura, H., Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8, second edition (Cambridge University Press, Cambridge, 1989); translated from the Japanese by M. Reid.Google Scholar
Paškūnas, V., Coefficient systems and supersingular representations of GL2(F) , Mém. Soc. Math. Fr. (N.S.) 99 (2004).Google Scholar
Paškūnas, V., Admissible unitary completions of locally ℚ p -rational representations of GL2(F) , Represent. Theory 14 (2010), 324354.CrossRefGoogle Scholar
Paškūnas, V., The image of Colmez’s Montreal functor , Publ. Math. Inst. Hautes Études Sci. 118 (2013), 1191.Google Scholar
Paškūnas, V., On the Breuil–Mézard conjecture , Duke Math. J. 164 (2015), 297359.Google Scholar
Paškūnas, V., On 2-dimensional 2-adic Galois representations of local and global fields , Algebra Number Theory 10 (2016), 13011358.Google Scholar
Sander, F., A local proof of the Breuil–Mézard conjecture in the scalar semi-simplification case , J. Lond. Math. Soc. (2) 94 (2016), 447461.Google Scholar
Schneider, P. and Teitelbaum, J., Banach–Hecke algebras and p-adic Galois representations , Doc. Math. (2006), 631684; Extra Vol.Google Scholar
Scholze, P., On the $p$ -adic cohomology of the Lubin–Tate tower, Ann. Sci. Éc. Norm. Supér. (4), to appear. Preprint (2015), arXiv:1506.04022.Google Scholar
Serre, J.-P., Sur les représentations modulaires de degré 2 de Gal( Q /Q) , Duke Math. J. 54 (1987), 179230.Google Scholar
Taylor, R. and Wiles, A., Ring-theoretic properties of certain Hecke algebras , Ann. of Math. (2) 141 (1995), 553572.CrossRefGoogle Scholar
Thorne, J., A 2-adic automorphy lifting theorem for unitary groups over CM fields , Math. Z. 285 (2017), 138.Google Scholar