Published online by Cambridge University Press: 17 August 2010
We use the theory of Kolyvagin systems to prove (most of) a refined class number formula conjectured by Darmon. We show that, for every odd prime p, each side of Darmon’s conjectured formula (indexed by positive integers n) is ‘almost’ a p-adic Kolyvagin system as n varies. Using the fact that the space of Kolyvagin systems is free of rank one over ℤp, we show that Darmon’s formula for arbitrary n follows from the case n=1, which in turn follows from classical formulas.