Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T22:28:50.877Z Has data issue: false hasContentIssue false

Representations of metaplectic groups I: epsilon dichotomy and local Langlands correspondence

Published online by Cambridge University Press:  31 October 2012

Wee Teck Gan
Affiliation:
Department of Mathematics, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge Road, 119076, Singapore (email: wgan@math.ucsd.edu)
Gordan Savin
Affiliation:
Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA (email: savin@math.utah.edu)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using theta correspondence, we classify the irreducible representations of Mp2n in terms of the irreducible representations of SO2n+1 and determine many properties of this classification. This is a local Shimura correspondence which extends the well-known results of Waldspurger for n=1.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2012

References

[Ada95]Adams, J., Genuine representations of the metaplectic group and epsilon factors, in Proc. int. congress of mathematicians, Zürich, 1994 (Birkhäuser, Basel, 1995), 721731.CrossRefGoogle Scholar
[AB95]Adams, J. and Barbasch, D., Reductive dual pair correspondence for complex groups, J. Funct. Anal. 132 (1995), 142.CrossRefGoogle Scholar
[AB98]Adams, J. and Barbasch, D., Genuine representations of the metaplectic group, Compositio Math. 113 (1998), 2366.CrossRefGoogle Scholar
[Art11]Arthur, J., The endoscopic classification of representations: orthogonal and symplectic groups, Preprint (2011), available at http://www.claymath.org/cw/arthur/pdf/Book.pdf.Google Scholar
[BJ]Ban, D. and Jantzen, C., The Langlands quotient theorem for finite central extensions of p-adic groups, Preprint.Google Scholar
[Bor77]Borel, A., Automorphic L-functions, in Automorphic forms, representations and L-functions, Proceedings of Symposia in Pure Mathematics, vol. XXXIII, Part II (American Mathematical Society, Providence, RI, 1977), 2761.Google Scholar
[Fur95]Furusawa, M., On the theta lift from SO2n+1 to , J. Reine Angew. Math. 466 (1995), 87110.Google Scholar
[Gan]Gan, W. T., Doubling zeta integrals and local factors for metaplectic groups, Nagoya Math. J. (Hiroshi Saito memorial volume), to appear, available at http://www.math.nus.edu.sg/∼matgwt.Google Scholar
[GGP12]Gan, W. T., Gross, B. H. and Prasad, D., Symplectic local root numbers, central critical L-values and restriction problems in the representation theory of classical groups, Astérisque 346 (2012), 1110.Google Scholar
[GI]Gan, W. T. and Ichino, A., Formal degrees and local theta correspondences, Preprint, available at http://www.math.nus.edu.sg/∼matgwt.Google Scholar
[GS12]Gan, W. T. and Savin, G., Representations of metaplectic groups II: Hecke algebra correspondences, Represent. Theory (2012), to appear, available at http://www.math.nus.edu.sg/∼matgwt.Google Scholar
[GT11]Gan, W. T. and Takeda, S., The local Langlands conjecture for GSp(4), Ann. of Math. (2) 173 (2011), 18411882.CrossRefGoogle Scholar
[GT]Gan, W. T. and Tantono, W., The local Langlands conjecture for GSp(4) II: the case of inner forms, Preprint, available at http://www.math.nus.edu.sg/∼matgwt.Google Scholar
[GP92]Gross, B. and Prasad, D., On the decomposition of a representation of SOn when restricted to SOn−1, Canad. J. Math. 44 (1992), 9741002.CrossRefGoogle Scholar
[HM10]Hanzer, M. and Muić, G., Parabolic induction and Jacquet functors for metaplectic groups, J. Algebra 323 (2010), 241260.CrossRefGoogle Scholar
[HM11]Hanzer, M. and Muić, G., Rank one reducibility for metapletic groups via theta correspondence, Canad. J. Math. 63 (2011), 591615.CrossRefGoogle Scholar
[HKS96]Harris, M., Kudla, S. and Sweet, J., Theta dichotomy for unitary groups, J. Amer. Math. Soc. 9 (1996), 9411004.CrossRefGoogle Scholar
[Hen84]Henniart, G., La conjecture de Langlands locale pour GL(3), Mém. Soc. Math. Fr. (N.S.) 11/12 (1984), 1186.Google Scholar
[II10]Ichino, A. and Ikeda, T., On the periods of automorphic forms on special orthogonal groups and the Gross–Prasad conjecture, Geom. Funct. Anal. 19 (2010), 13781425.CrossRefGoogle Scholar
[JS04]Jiang, D. H. and Soudry, D., Generic representations and local Langlands reciprocity law for p-adic SO2n+1, in Contributions to automorphic forms, geometry, and number theory (Johns Hopkins University Press, Baltimore, MD, 2004), 457519.Google Scholar
[Kud86]Kudla, S., On the local theta correspondence, Invent. Math. 83 (1986), 229255.CrossRefGoogle Scholar
[Kud]Kudla, S., Notes on the local theta correspondence, available at www.math.utoronto.ca/∼skudla.Google Scholar
[KR90]Kudla, S. and Rallis, S., Poles of Eisenstein series and L-functions, in Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, part II (Ramat Aviv, 1989), Israel Mathematical Conference Proceedings, vol. 3 (Weizmann, Jerusalem, 1990), 81110.Google Scholar
[KR05]Kudla, S. and Rallis, S., On first occurrence in the local theta correspondence, in Automorphic representations, L-functions and applications: progress and prospects, Ohio State University Mathematical Research Institute Publications, vol. 11 (de Gruyter, Berlin, 2005), 273308.CrossRefGoogle Scholar
[LR05]Lapid, E. and Rallis, S., On the local factors of representations of classical groups, in Automorphic representations, L-functions and applications: progress and prospects, Ohio State University Mathematical Research Institute Publications, vol. 11 (de Gruyter, Berlin, 2005), 309359.CrossRefGoogle Scholar
[Moe11a]Moeglin, C., Conjecture d’Adams pour la correspondance de Howe et filtration de Kudla, in Arithmetic geometry and automorphic forms, Advanced Lectures in Mathematics, vol. 19 (International Press, Boston, 2011), 445503.Google Scholar
[Moe11b]Moeglin, C., Multiplicité 1 dans les paquets d’Arthur aux places P-adiques, in On certainL-functions, Clay Mathematics Proceedings, vol. 13 (American Mathematical Society, Providence, RI, 2011), 333374.Google Scholar
[MVW87]Moeglin, C., Vigneras, M.-F. and Waldspurger, J.-L., Correspondances de Howe sur un corps p-adique, Lecture Notes in Mathematics, vol. 1291 (Springer, Berlin, 1987).CrossRefGoogle Scholar
[MW95]Moeglin, C. and Waldspurger, J. L., Spectral decomposition and Eisenstein series, Cambridge Tracts in Mathematics, vol. 113 (Cambridge University Press, Cambridge, 1995).CrossRefGoogle Scholar
[Mui08a]Muić, G., On the structure of theta lifts of discrete series for dual pairs (Sp(n),O(V )), Israel J. Math. 164 (2008), 87124.CrossRefGoogle Scholar
[Mui08b]Muić, G., Theta lifts of tempered representations for dual pairs (Sp2n,O(V )), Canad. J. Math. 60 (2008), 13061335.CrossRefGoogle Scholar
[MS00a]Muić, G. and Savin, G., Symplectic-orthogonal theta lifts of generic discrete series, Duke Math. J. 101 (2000), 317333.CrossRefGoogle Scholar
[MS00b]Muić, G. and Savin, G., Complementary series for Hermitian quaternionic groups, Canad. Math. Bull. 43 (2000), 9099.CrossRefGoogle Scholar
[PR86]Piatetski-Shapiro, I. and Rallis, S., ϵ factor of representations of classical groups, Proc. Natl. Acad. Sci. USA 83 (1986), 45894593.CrossRefGoogle ScholarPubMed
[Ral84]Rallis, S., On the Howe duality conjecture, Compositio Math. 51 (1984), 333399.Google Scholar
[Sha90]Shahidi, F., A proof of Langlands’ conjecture on Plancherel measures; complementary series for p-adic groups, Ann. of Math. (2) 132 (1990), 273330.CrossRefGoogle Scholar
[Sil79]Silberger, A. J., Introduction to harmonic analysis on reductive p-adic groups, Mathematical Notes, vol. 23 (Princeton University Press, Princeton, NJ, 1979).Google Scholar
[Sou93]Soudry, D., Rankin–Selberg convolutions for SO(2n+1)×GL(n): local theory, Mem. Amer. Math. Soc. 105 (1993), 1100.Google Scholar
[Swe95]Sweet, J., Functional equations of p-adic zeta integrals and representations of the metaplectic group, Preprint (1995).Google Scholar
[Szp09]Szpruch, D., The Langlands–Shahidi method for the metaplectic group and applications, PhD thesis, Tel Aviv University (2009), arXiv:1004.3516v1.Google Scholar
[Wal80]Waldspurger, J.-L., Correspondance de Shimura, J. Math. Pures Appl. (9) 59 (1980), 1132.Google Scholar
[Wal90]Waldspurger, J.-L., Demonstration d’une conjecture de dualite de Howe dans le cas p-adique, p≠2, in Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, part I (Ramat Aviv, 1989), Israel Mathematical Conference Proceedings, vol. 2 (Weizmann, Jerusalem, 1990), 267324.Google Scholar
[Wal91]Waldspurger, J.-L., Correspondances de Shimura et quaternions, Forum Math. 3 (1991), 219307.CrossRefGoogle Scholar
[Wal03]Waldspurger, J.-L., La formule de Plancherel pour les groupes p-adiques dapres Harish-Chandra, J. Inst. Math. Jussieu 2 (2003), 235333.CrossRefGoogle Scholar
[Wal10]Waldspurger, J.-L., Une formule intégrale reliée à la conjecture locale de Gross–Prasad, Compositio Math. 146 (2010), 11801290.CrossRefGoogle Scholar
[Wal12a]Waldspurger, J.-L., Une formule intégrale reliée à la conjecture locale de Gross–Prasad, 2ème partie: extension aux représentations tempérées, Astérisque 346 (2012), 171311.Google Scholar
[Wal12b]Waldspurger, J.-L., Une variante d’un résultat de Aizenbud, Gourevitch, Rallis et Schiffmann, Astérisque 346 (2012), 313318.Google Scholar
[Wal1]Waldspurger, J.-L., Calcul d’une valeur d’un facteur epsilon par une formule intégrale, Astérisque, to appear.Google Scholar
[Wal2]Waldspurger, J.-L., La conjecture locale de Gross–Prasad pour les représentations tempérées des groupes speciaux orthogonaux, Astérisque, to appear.Google Scholar
[Zor11]Zorn, C., Theta dichotomy and doubling epsilon factors for Mp(n,F), Amer. J. Math. 133 (2011), 13131364.CrossRefGoogle Scholar