Article contents
Some Properties of Finite Morphisms on Double Points
Published online by Cambridge University Press: 04 December 2007
Abstract
For a finite morphism f : X → Y of smooth varieties such that f maps X birationally onto X′=f(X), the local equations of f are obtained at the double points which are not triple. If $\cal C$ is the conductor of X over X′, and $D = Sing(X') ⊂ X'$, $Δ ⊂ X$ are the subschemes defined by $\cal C$, then D and Δ are shown to be complete intersections at these points, provided that $\cal C$ has “the expected” codimension. This leads one to determine the depth of local rings of X′ at these double points. On the other hand, when $\cal C$ is reduced in X, it is proved that X′ is weakly normal at these points, and some global results are given. For the case of affine spaces, the local equations of X′ at these points are computed.
Keywords
- Type
- Research Article
- Information
- Copyright
- © 2000 Kluwer Academic Publishers
- 2
- Cited by