Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T20:03:32.423Z Has data issue: false hasContentIssue false

A topological index theorem for manifolds with corners

Published online by Cambridge University Press:  09 November 2011

Bertrand Monthubert
Affiliation:
Institut de Mathématiques de Toulouse, Université de Toulouse, F-31062 Toulouse CEDEX 4, France (email: bertrand@monthubert.net)
Victor Nistor
Affiliation:
Mathematics Department, Pennsylvania State University, University Park, PA 16802, USA (email: nistor@math.psu.edu) Inst. of Math. of the Romanian Academy, PO BOX 1-764, 014700 Bucharest, Romania
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We define an analytic index and prove a topological index theorem for a non-compact manifold M0 with poly-cylindrical ends. Our topological index theorem depends only on the principal symbol, and establishes the equality of the topological and analytical index in the group K0(C*(M)), where C*(M) is a canonical C*-algebra associated to the canonical compactification M of M0. Our topological index is thus, in general, not an integer, unlike the usual Fredholm index appearing in the Atiyah–Singer theorem, which is an integer. This will lead, as an application in a subsequent paper, to the determination of the K-theory groups K0(C*(M)) of the groupoid C*-algebra of the manifolds with corners M. We also prove that an elliptic operator P on M0 has an invertible perturbation P+R by a lower-order operator if and only if its analytic index vanishes.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2011

References

[AM09]Albin, P. and Melrose, R., Fredholm realizations of elliptic symbols on manifolds with boundary, J. Reine Angew. Math. 627 (2009), 155181; MR 2494931.Google Scholar
[AR09]Albin, P. and Rochon, F., Families index for manifolds with hyperbolic cusp singularities, Int. Math. Res. Not. IMRN (2009), 625697; MR 2480097(2010b:58027).Google Scholar
[AJ08]Alldridge, A. and Johansen, T., An index theorem for Wiener–Hopf operators, Adv. Math. 218 (2008), 163201; MR 2409412(2009m:47124).CrossRefGoogle Scholar
[AIN06]Ammann, B., Ionescu, A. and Nistor, V., Sobolev spaces on Lie manifolds and regularity for polyhedral domains, Doc. Math. 11 (2006), 161206 (electronic); MR 2262931(2008k:35115).CrossRefGoogle Scholar
[ALN04]Ammann, B., Lauter, R. and Nistor, V., On the geometry of Riemannian manifolds with a Lie structure at infinity, Int. J. Math. Math. Sci. 2004 (2004), 161193; MR 2038804(2005h:53050).CrossRefGoogle Scholar
[AS09]Androulidakis, I. and Skandalis, G., The holonomy groupoid of a singular foliation, J. Reine Angew. Math. 626 (2009), 137; MR 2492988(2010c:58026).CrossRefGoogle Scholar
[APS73]Atiyah, M. F., Patodi, V. K. and Singer, I. M., Spectral asymmetry and Riemannian geometry, Bull. Lond. Math. Soc. 5 (1973), 229234; MR 489776.CrossRefGoogle Scholar
[AS68]Atiyah, M. F. and Singer, I. M., The index of elliptic operators, I, Ann. of Math. (2) 87 (1968), 484530.CrossRefGoogle Scholar
[BP09]Benameur, M.-T. and Piazza, P., Index, eta and rho invariants on foliated bundles, Astérisque 327 (2009), 201287; MR 2642361.Google Scholar
[Bun09]Bunke, U., Index theory, eta forms, and Deligne cohomology, Mem. Amer. Math. Soc. 198 (2009), vi+120; MR 2191484(2010d:58023).Google Scholar
[Car06]Carvalho, C., A topological approach to the cobordism invariance of the index, K-Theory 36 (2006), 131.CrossRefGoogle Scholar
[Con94]Connes, A., Noncommutative geometry (Academic Press, New York, NY, 1994).Google Scholar
[Dou64]Douady, A., Varits bords anguleux et voisinages tubulaires, in Topologie différentielle, Séminaire Henri Cartan, 14éme année (1961/62) (Secrétariat mathématique, Paris, 1964).Google Scholar
[Erp10]van Erp, E., The Atiyah–Singer index formula for subelliptic operators on contact manifolds. Part I, Ann. of Math. (2) 171 (2010), 16471681; MR 2680395.CrossRefGoogle Scholar
[Hor85]Hörmander, L., The analysis of linear partial differential operators, Pseudo-differential operators, Vol. 3, Grundlehren der Mathematischen Wissenschaften, vol. 274 (Springer, Berlin–Heidelberg–New York, 1985).Google Scholar
[Lan03]Landsman, N., Quantization and the tangent groupoid, in Operator algebras and mathematical physics (Constanţa, 2001) (Theta, Bucharest, 2003), 251265; MR 2018234(2004j:46093).Google Scholar
[LMN00]Lauter, R., Monthubert, B. and Nistor, V., Pseudodifferential analysis on continuous family groupoids, Doc. Math. 5 (2000), 625655 (electronic); MR 1800315.CrossRefGoogle Scholar
[LM03]Lauter, R. and Moroianu, S., Homology of pseudodifferential operators on manifolds with fibered cusps, Trans. Amer. Math. Soc. 355 (2003), 30093046 (electronic); MR 1974673(2004i:58050).CrossRefGoogle Scholar
[LN01]Lauter, R. and Nistor, V., Analysis of geometric operators on open manifolds: a groupoid approach, in Quantization of singular symplectic quotients, Progress in Mathematics, vol. 198 (Birkhäuser, Basel, 2001), 181229; MR 1938556(2004e:58047).CrossRefGoogle Scholar
[LP05]Leichtnam, E. and Piazza, P., Cut-and-paste on foliated bundles, in Spectral geometry of manifolds with boundary and decomposition of manifolds, Contemporary Mathematics, vol. 366 (American Mathematical Society, Providence, RI, 2005), 151192; MR 2114488(2005i:58028).CrossRefGoogle Scholar
[Mac87]Mackenzie, K., Lie groupoids and Lie algebroids in differential geometry, London Mathematical Society Lecture Notes Series, vol. 124 (Cambridge University Press, Cambridge, 1987).CrossRefGoogle Scholar
[MSS06]Melo, S., Schick, T. and Schrohe, E., A K-theoretic proof of Boutet de Monvel’s index theorem for boundary value problems, J. Reine Angew. Math. 599 (2006), 217233; MR 2279103(2008k:58051).Google Scholar
[Mel95]Melrose, R., Geometric scattering theory, Stanford Lectures (Cambridge University Press, Cambridge, 1995).Google Scholar
[MN98]Melrose, R. and Nistor, V., K-theory of C *-algebras of b-pseudodifferential operators, Geom. Funct. Anal. 8 (1998), 88122; MR 1601850(99i:58145).CrossRefGoogle Scholar
[MP92]Melrose, R. and Piazza, P., Analytic K-theory on manifolds with corners, Adv. Math. 92 (1992), 126; MR 93h:58149.CrossRefGoogle Scholar
[Mon98]Monthubert, B., Groupoïdes et calcul pseudo-différentiel sur les variétés à coins, PhD thesis, Université Paris 7 (1998).Google Scholar
[Mon99]Monthubert, B., Pseudodifferential calculus on manifolds with corners and groupoids, Proc. Amer. Math. Soc. 127 (1999), 28712881; MR 1600121.CrossRefGoogle Scholar
[Mon03]Monthubert, B., Groupoids and pseudodifferential calculus on manifolds with corners, J. Funct. Anal. (2003).CrossRefGoogle Scholar
[MP97]Monthubert, B. and Pierrot, F., Indice analytique et groupoïdes de Lie, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), 193198; MR 98k:58219.CrossRefGoogle Scholar
[MRW87]Muhly, P., Renault, J. and Williams, D., Equivalence and isomorphism for groupoid C*-algebras, J. Operator Theory 17 (1987), 322 (in English).Google Scholar
[NSS07]Nazaĭkinskiĭ, V., Savin, A. and Sternin, B., On the homotopy classification of elliptic operators on manifolds with corners, Dokl. Akad. Nauk 413 (2007), 1619; MR 2447061(2009i:58034).Google Scholar
[Nis00]Nistor, V., Groupoids and the integration of Lie algebroids, J. Math. Soc. Japan 52 (2000), 847868.CrossRefGoogle Scholar
[Nis03a]Nistor, V., Asymptotics and index for families invariant with respect to a bundle of Lie groups, Rev. Roumaine Math. Pures Appl. 47 (2003), 451483; MR 2004e:58037.Google Scholar
[Nis03b]Nistor, V., An index theorem for gauge-invariant families: the case of solvable groups, Acta Math. Hungar. 99 (2003), 155183; MR 2004e:58038.CrossRefGoogle Scholar
[Nis05]Nistor, V., Pseudodifferential operators on non-compact manifolds and analysis on polyhedral domains, in Spectral geometry of manifolds with boundary and decomposition of manifolds, Contemporary Mathematics, vol. 366 (American Mathematical Society, Providence, RI, 2005), 307328; MR 2114493.CrossRefGoogle Scholar
[NT04]Nistor, V. and Troitsky, E., An index for gauge-invariant operators and the Dixmier–Douady invariant, Trans. Amer. Math. Soc. 356 (2004), 185218 (electronic); MR 2020029(2005b:58028).CrossRefGoogle Scholar
[NWX99]Nistor, V., Weinstein, A. and Xu, P., Pseudodifferential operators on groupoids, Pacific J. Math. 189 (1999), 117152.CrossRefGoogle Scholar
[Ram99]Ramazan, B., Limite classique de C*-algèbres de groupoïdes de Lie, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), 603606; MR 1717117(2000h:46070).CrossRefGoogle Scholar
[Ren80]Renault, J., A groupoid approach to c *-algebras, Lecture Notes in Mathematics, vol. 793 (Springer, New York, 1980).CrossRefGoogle Scholar
[Rie82]Rieffel, M., Morita equivalence for operator algebras, in Operator algebras and applications, part I (Kingston, Ont., 1980), Proceedings of Symposia in Pure Mathematics, vol. 38 (American Mathematical Society, Providence, RI, 1982), 285298; MR 679708(84k:46045).CrossRefGoogle Scholar
[Vas09]Vasselli, E., Bundles of C *-categories. II. C *-dynamical systems and Dixmier–Douady invariants, J. Funct. Anal. 257 (2009), 357387; MR 2527021(2010m:46108).CrossRefGoogle Scholar