Article contents
Wall-crossings and a categorification of K-theory stable bases of the Springer resolution
Published online by Cambridge University Press: 06 October 2021
Abstract
We compare the $K$-theory stable bases of the Springer resolution associated to different affine Weyl alcoves. We prove that (up to relabelling) the change of alcoves operators are given by the Demazure–Lusztig operators in the affine Hecke algebra. We then show that these bases are categorified by the Verma modules of the Lie algebra, under the localization of Lie algebras in positive characteristic of Bezrukavnikov, Mirković, and Rumynin. As an application, we prove that the wall-crossing matrices of the $K$-theory stable bases coincide with the monodromy matrices of the quantum cohomology of the Springer resolution.
MSC classification
- Type
- Research Article
- Information
- Copyright
- © 2021 The Author(s). The publishing rights in this article are licensed to Foundation Compositio Mathematica under an exclusive licence
References
- 2
- Cited by