Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-28T05:46:30.227Z Has data issue: false hasContentIssue false

Assessing the interplay between multigenic and environmental influences on adolescent to adult pathways of antisocial behaviors

Published online by Cambridge University Press:  22 November 2017

James J. Li*
Affiliation:
University of Wisconsin–Madison
*
Address correspondence and reprint requests to: James J. Li, Department of Psychology, University of Wisconsin–Madison, 1202 West Johnson Street, Madison, WI 53706; E-mail: james.li@wisc.edu.

Abstract

The current investigation utilized a developmental psychopathology approach to test the hypothesis that multigenic (i.e., dopaminergic and serotonergic genes) and multienvironmental factors interactively contribute to developmental pathways of antisocial behavior (ASB). A sample of 8,834 Caucasian individuals from the National Longitudinal Study of Adolescent to Adult Health (Add Health) were used to (a) examine the developmental pathways of ASB from age 13 to 32 using growth mixture modeling, (b) compute weighted multigenic risk scores (Add Health MRS) for ASB from six well-characterized polymorphisms in dopamine and serotonin genes, and (c) test the interaction between the Add Health MRS and a measures of support (incorporating indicators of both positive and negative support from parents and schools). Four pathways of adolescent to adult ASB emerged from the growth mixture models: low, adolescence-peaked, high decline, and persistent. Add Health MRS predicted the persistent ASB pathway, but not other ASB pathways. Males with high Add Health MRS, but not low MRS, had significantly greater odds of being in the adolescence-peaked pathway relative to the low pathway at low levels of school connectedness. Nonfamilial environmental influences during adolescence may have a cumulative impact on the development of ASB, particularly among males with greater underlying genetic risks.

Type
Special Issue Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The author was supported in part by a core grant to the Waisman Center from the National Institute of Child Health and Human Development (P30-HD03352). The author also acknowledges contributions from Ben Domingue and Garvesh Raskutti for their assistance in the preparation of this manuscript, including their analytic expertise and critical feedback. This research uses data from the National Longitudinal Study of Adolescent to Adult Health (Add Health), a program project directed by Kathleen Mullan Harris and designed by J. Richard Udry, Peter S. Bearman, and Kathleen Mullan Harris at the University of North Carolina at Chapel Hill, and funded by Grant P01-HD31921 from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, with cooperative funding from 23 other federal agencies and foundations. Special acknowledgment is due Ronald R. Rindfuss and Barbara Entwisle for assistance in the original design. Information on how to obtain the Add Health data files is available on the Add Health website (http://www.cpc.unc.edu/addhealth). No direct support was received from Grant P01-HD31921 for this analysis.

References

Asbury, K., Almeida, D., Hibel, J., Harlaar, N., & Plomin, R. (2008). Clones in the classroom: A daily diary study of the nonshared environmental relationship between monozygotic twin differences in school experience and achievement. Twin Research and Human Genetics, 11, 586595.CrossRefGoogle ScholarPubMed
Bakermans-Kranenburg, M. J., & van Ijzendoorn, M. H. (2011). Differential susceptibility to rearing environment depending on dopamine-related genes: New evidence and a meta-analysis. Development and Psychopathology, 23, 3952.CrossRefGoogle ScholarPubMed
Barnes, J. C., Beaver, K. M., & Boutwell, B. B. (2011). Examining the genetic underpinnings to Moffitt's developmental taxonomy: A behavioral genetic analysis. Criminology, 49, 923954.CrossRefGoogle Scholar
Batanova, M., & Loukas, A. (2014). Unique and interactive effects of empathy, family, and school factors on early adolescents’ aggression. Journal of Youth and Adolescence, 43, 18901902.CrossRefGoogle ScholarPubMed
Beaver, K. M., & Belsky, J. (2012). Gene-environment interaction and the intergenerational transmission of parenting: Testing the differential-susceptibility hypothesis. Psychiatric Quarterly, 83, 2940.CrossRefGoogle ScholarPubMed
Beaver, K. M., Wright, J. P., & Walsh, A. (2008). A gene-based evolutionary explanation for the association between criminal involvement and number of sex partners. Biodemography and Social Biology, 54, 4755.CrossRefGoogle ScholarPubMed
Belsky, J., & Beaver, K. M. (2011). Cumulative-genetic plasticity, parenting and adolescent self-regulation. Journal of Child Psychology and Psychiatry, 52, 619626.CrossRefGoogle ScholarPubMed
Belsky, J., & Pluess, M. (2009). Beyond diathesis stress: Differential susceptibility to environmental influences. Psychological Bulletin, 135, 885.CrossRefGoogle ScholarPubMed
Bond, L., Butler, H., Thomas, L., Carlin, J., Glover, S., Bowes, G., & Patton, G. (2007). Social and school connectedness in early secondary school as predictors of late teenage substance use, mental health, and academic outcomes. Journal of Adolescent Health, 40, 357.CrossRefGoogle ScholarPubMed
Bongers, I. L., Koot, H. M., van der Ende, J., & Verhulst, F. C. (2003). The normative development of child and adolescent problem behavior. Journal of Abnormal Psychology, 112, 179.CrossRefGoogle ScholarPubMed
Borowsky, I. W., Ireland, M., & Resnick, M. D. (2001). Adolescent suicide attempts: Risks and protectors. Pediatrics, 107, 485493.CrossRefGoogle ScholarPubMed
Brody, G. H., Chen, Y. F., & Beach, S. R. (2013). Differential susceptibility to prevention: GABAergic, dopaminergic, and multilocus effects. Journal of Child Psychology and Psychiatry, 54, 863871.CrossRefGoogle ScholarPubMed
Brody, G. H., Yu, T., Beach, S. R., & Philibert, R. A. (2015). Prevention effects ameliorate the prospective association between nonsupportive parenting and diminished telomere length. Prevention Science, 16, 171180.CrossRefGoogle ScholarPubMed
Buchmann, A. F., Zohsel, K., Blomeyer, D., Hohm, E., Hohmann, S., Jennen-Steinmetz, C., … Esser, G. (2014). Interaction between prenatal stress and dopamine D4 receptor genotype in predicting aggression and cortisol levels in young adults. Psychopharmacology, 231, 30893097.CrossRefGoogle ScholarPubMed
Buckholtz, J. W., & Meyer-Lindenberg, A. (2008). MAOA and the neurogenetic architecture of human aggression. Trends in Neurosciences, 31, 120129.CrossRefGoogle ScholarPubMed
Buckholtz, J. W., Treadway, M. T., Cowan, R. L., Woodward, N. D., Li, R., Ansari, M. S., … Kessler, R. M. (2010). Dopaminergic network differences in human impulsivity. Science, 329, 532.CrossRefGoogle ScholarPubMed
Burt, S. A. (2009). Are there meaningful etiological differences within antisocial behavior? Results of a meta-analysis. Clinical Psychology Review, 29, 163178.CrossRefGoogle ScholarPubMed
Burt, S. A. (2013). Do etiological influences on aggression overlap with those on rule breaking? A meta-analysis. Psychological Medicine, 43, 18011812.CrossRefGoogle ScholarPubMed
Burt, S. A., Klump, K. L., Gorman-Smith, D., & Neiderhiser, J. M. (2016). Neighborhood disadvantage alters the origins of children's nonaggressive conduct problems. Clinical Psychological Science, 4, 511526.CrossRefGoogle ScholarPubMed
Burt, S. A., & Mikolajewski, A. J. (2008). Preliminary evidence that specific candidate genes are associated with adolescent-onset antisocial behavior. Aggressive Behavior, 34, 437445.CrossRefGoogle ScholarPubMed
Byrd, A. L., & Manuck, S. B. (2014). MAOA, childhood maltreatment, and antisocial behavior: Meta-analysis of a gene-environment interaction. Biological Psychiatry, 75, 917.CrossRefGoogle ScholarPubMed
Calvete, E., & Cardeñoso, O. (2005). Gender differences in cognitive vulnerability to depression and behavior problems in adolescents. Journal of Abnormal Child Psychology, 33, 179192.CrossRefGoogle ScholarPubMed
Carrel, L., & Willard, H. F. (2005). X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature, 434, 400404.CrossRefGoogle ScholarPubMed
Casey, B. J., Jones, R. M., & Hare, T. A. (2008). The adolescent brain. Annals of the New York Academy of Sciences, 1124, 111126.CrossRefGoogle ScholarPubMed
Caspi, A., Hariri, A. R., Holmes, A., Uher, R., & Moffitt, T. E. (2010). Genetic sensitivity to the environment: The case of the serotonin transporter gene and its implications for studying complex diseases and traits. Focus, 8, 398416.CrossRefGoogle Scholar
Caspi, A., Houts, R. M., Belsky, D. W., Goldman-Mellor, S. J., Harrington, H., Israel, S., … Moffitt, T. E. (2014). The p factor: One general psychopathology factor in the structure of psychiatric disorders? Clinical Psychological Science, 2, 119137.CrossRefGoogle Scholar
Caspi, A., McClay, J., Moffitt, T. E., Mill, J., Martin, J., Craig, I. W., … Poulton, R. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297, 851854.CrossRefGoogle ScholarPubMed
Castellani, V., Pastorelli, C., Eisenberg, N., Gerbino, M., Di Giunta, L., Ceravolo, R., & Milioni, M. (2014). Hostile, aggressive family conflict trajectories during the transition to adulthood: Associations with adolescent Big Five and emerging adulthood adjustment problems. Journal of Adolescence, 37, 647658.CrossRefGoogle ScholarPubMed
Catalano, R. F., & Hawkins, J. D. (1996). A theory of antisocial behavior. In Hawkins, J. D. (Ed.), Delinquency and crime: Current theories. Cambridge: Cambridge University Press.Google Scholar
Cleveland, H. H., Wiebe, R. P., & Rowe, D. C. (2005). Sources of exposure to smoking and drinking friends among adolescents: A behavioral genetic evaluation. Journal of Genetic Psychology, 166, 153169.Google ScholarPubMed
Cordell, H. J. (2009). Detecting gene–gene interactions that underlie human diseases. Nature Reviews Genetics, 10, 392404.CrossRefGoogle ScholarPubMed
Côté, S., Zoccolillo, M., Tremblay, R. E., Nagin, D., & Vitaro, F. (2001). Predicting girls’ conduct disorder in adolescence from childhood trajectories of disruptive behaviors. Journal of the American Academy of Child & Adolescent Psychiatry, 40, 678684.CrossRefGoogle ScholarPubMed
Crosnoe, R., Erickson, K. G., & Dornbusch, S. M. (2002). Protective functions of family relationships and school factors on the deviant behavior of adolescent boys and girls reducing the impact of risky friendships. Youth & Society, 33, 515544.CrossRefGoogle Scholar
Cumming, P., Brown, E., Damsma, G., & Fibiger, H. (1992). Formation and clearance of interstitial metabolites of dopamine and serotonin in the rat striatum: An in vivo microdialysis study. Journal of Neurochemistry, 59, 19051914.CrossRefGoogle ScholarPubMed
Davidson, R. J., Putnam, K. M., & Larson, C. L. (2000). Dysfunction in the neural circuitry of emotion regulation—A possible prelude to violence. Science, 289, 591594.CrossRefGoogle ScholarPubMed
Derringer, J., Krueger, R. F., Dick, D. M., Saccone, S., Grucza, R. A., Agrawal, A., … Nurnberger, J. I. (2010). Predicting sensation seeking from dopamine genes a candidate-system approach. Psychological Science, 21, 12821290.CrossRefGoogle Scholar
DeYoung, C. G., Getchell, M., Koposov, R. A., Yrigollen, C. M., Haeffel, G. J., Klinteberg, B., … Grigorenko, E. L. (2010). Variation in the catechol-O-methyltransferase Val158Met polymorphism associated with conduct disorder and ADHD symptoms among adolescent male delinquents. Psychiatric Genetics, 20, 20.CrossRefGoogle Scholar
Dick, D. M. (2011). Gene-environment interaction in psychological traits and disorders. Annual Review of Clinical Psychology, 7, 383.CrossRefGoogle ScholarPubMed
DiLalla, L. F., & Gottesman, I. I. (1989). Heterogeneity of causes for delinquency and criminality: Lifespan perspectives. Development and Psychopathology, 1, 339349.CrossRefGoogle Scholar
Doyle, A. B., & Markiewicz, D. (2005). Parenting, marital conflict and adjustment from early- to mid-adolescence: Mediated by adolescent attachment style? Journal of Youth and Adolescence, 34, 97110.CrossRefGoogle Scholar
D'Souza, U. M., & Craig, I. W. (2008). Functional genetic polymorphisms in serotonin and dopamine gene systems and their significance in behavioural disorders. Progress in Brain Research, 172, 7398.CrossRefGoogle ScholarPubMed
D'Unger, A. V., Land, K. C., & McCall, P. L. (2002). Sex differences in age patterns of delinquent/criminal careers: Results from Poisson latent class analyses of the Philadelphia cohort study. Journal of Quantitative Criminology, 18, 349375.CrossRefGoogle Scholar
Edwards, A. C., Bacanu, S. A., Bigdeli, T. B., Moscati, A., & Kendler, K. S. (2016). Evaluating the dopamine hypothesis of schizophrenia in a large-scale genome-wide association study. Schizophrenia Research. Advance online publication.CrossRefGoogle Scholar
Everitt, B. J., & Robbins, T. W. (2000). Second-order schedules of drug reinforcement in rats and monkeys: Measurement of reinforcing efficacy and drug-seeking behaviour. Psychopharmacology, 153, 1730.CrossRefGoogle ScholarPubMed
Farrington, D. P. (1987). Early precursors of frequent offending. In Families, schools, and delinquency prevention (pp. 2750). New York: Springer.CrossRefGoogle Scholar
Farrington, D. P. (1995). The development of offending and antisocial behaviour from childhood: Key findings from the Cambridge Study in Delinquent Development. Journal of Child Psychology and Psychiatry, 6, 929964.CrossRefGoogle Scholar
Farrington, D. P. (1998). Predictors, causes, and correlates of male youth violence. Crime and Justice, 24, 421475.CrossRefGoogle Scholar
Ferguson, C. J. (2010). Genetic contributions to antisocial personality and behavior: A meta-analytic review from an evolutionary perspective. Journal of Social Psychology, 150, 160180.CrossRefGoogle ScholarPubMed
Ficks, C. A., & Waldman, I. D. (2014). Candidate genes for aggression and antisocial behavior: A meta-analysis of association studies of the 5HTTLPR and MAOA-uVNTR. Behavior Genetics, 44, 427444.CrossRefGoogle ScholarPubMed
Fontaine, N., Carbonneau, R., Vitaro, F., Barker, E. D., & Tremblay, R. E. (2009). Research review: A critical review of studies on the developmental trajectories of antisocial behavior in females. Journal of Child Psychology and Psychiatry, 50, 363385.CrossRefGoogle ScholarPubMed
Foster, E. M., & Jones, D. E. (2005). The high costs of aggression: Public expenditures resulting from conduct disorder. American Journal of Public Health, 95, 17671772.CrossRefGoogle ScholarPubMed
Frick, P. J., Lahey, B. B., Loeber, R., Tannenbaum, L., Van Horn, Y., Christ, M. A. G., … Hanson, K. (1993). Oppositional defiant disorder and conduct disorder: A meta-analytic review of factor analyses and cross-validation in a clinic sample. Clinical Psychology Review, 13, 319340.CrossRefGoogle Scholar
Gelernter, J., Kranzler, H. R., Sherva, R., Almasy, L., Koesterer, R., Smith, A. H., … Wodarz, N. (2014). Genome-wide association study of alcohol dependence: Significant findings in African- and European-Americans including novel risk loci. Molecular Psychiatry, 19, 4149.CrossRefGoogle ScholarPubMed
Gibbons, J. L., Barr, G. A., Bridger, W. H., & Liebowitz, S. F. (1979). Manipulations of dietary tryptophan: Effects on mouse killing and brain serotonin in the rat. Brain Research, 169, 139153.CrossRefGoogle ScholarPubMed
Gizer, I. R., & Waldman, I. D. (2012). Double dissociation between lab measures of inattention and impulsivity and the dopamine transporter gene (DAT1) and dopamine D4 receptor gene (DRD4). Journal of Abnormal Psychology, 121, 1011.CrossRefGoogle ScholarPubMed
Guo, G., Roettger, M. E., & Shih, J. C. (2007). Contributions of the DAT1 and DRD2 genes to serious and violent delinquency among adolescents and young adults. Human Genetics, 121, 125136.CrossRefGoogle ScholarPubMed
Haberstick, B. C., Smolen, A., & Hewitt, J. K. (2006). Family-based association test of the 5HTTLPR and aggressive behavior in a general population sample of children. Biological Psychiatry, 59, 836843.CrossRefGoogle Scholar
Hackman, D. A., Farah, M. J., & Meaney, M. J. (2010). Socioeconomic status and the brain: Mechanistic insights from human and animal research. Nature Reviews Neuroscience, 11, 651659.CrossRefGoogle ScholarPubMed
Harden, K. P., Hill, J. E., Turkheimer, E., & Emery, R. E. (2008). Gene-environment correlation and interaction in peer effects on adolescent alcohol and tobacco use. Behavior Genetics, 38, 339347.CrossRefGoogle ScholarPubMed
Heils, A., Teufel, A., Petri, S., Stöber, G., Riederer, P., Bengel, D., & Lesch, K. P. (1996). Allelic variation of human serotonin transporter gene expression. Journal of Neurochemistry, 66, 26212624.CrossRefGoogle ScholarPubMed
Hohmann, S., Becker, K., Fellinger, J., Banaschewski, T., Schmidt, M. H., Esser, G., & Laucht, M. (2009). Evidence for epistasis between the 5-HTTLPR and the dopamine D4 receptor polymorphisms in externalizing behavior among 15-year-olds. Journal of Neural Transmission, 116, 16211629.CrossRefGoogle ScholarPubMed
Holmes, A., Murphy, D. L., & Crawley, J. N. (2002). Reduced aggression in mice lacking the serotonin transporter. Psychopharmacology, 161, 160167.CrossRefGoogle ScholarPubMed
Hu, X. Z., Lipsky, R. H., Zhu, G., Akhtar, L. A., Taubman, J., Greenberg, B. D., … Murphy, D. L. (2006). Serotonin transporter promoter gain-of-function genotypes are linked to obsessive-compulsive disorder. American Journal of Human Genetics, 78, 815826.CrossRefGoogle ScholarPubMed
Huizinga, D., & Elliott, D. S. (1986). Reassessing the reliability and validity of self-report delinquency measures. Journal of Quantitative Criminology, 2, 293327.CrossRefGoogle Scholar
Hutchison, K. E., Stallings, M., McGeary, J., & Bryan, A. (2004). Population stratification in the candidate gene study: Fatal threat or red herring? Psychological Bulletin, 130, 66.CrossRefGoogle ScholarPubMed
Ingoldsby, E. M., & Shaw, D. S. (2002). Neighborhood contextual factors and early-starting antisocial pathways. Clinical Child and Family Psychology Review, 5, 2155.CrossRefGoogle ScholarPubMed
International Schizophrenia Consortium. (2009). Common polygenic variation contributes to risk of schizophrenia that overlaps with bipolar disorder. Nature, 460, 748752.CrossRefGoogle Scholar
Jacobson, K. C., & Rowe, D. C. (1999). Genetic and environmental influences on the relationships between family connectedness, school connectedness, and adolescent depressed mood: Sex differences. Developmental Psychology, 35, 926.CrossRefGoogle ScholarPubMed
Jaffee, S. R., Caspi, A., Moffitt, T. E., Dodge, K. A., Rutter, M., Taylor, A., & Tully, L. A. (2005). Nature × Nurture: Genetic vulnerabilities interact with physical maltreatment to promote conduct problems. Development and Psychopathology, 17, 6784.CrossRefGoogle ScholarPubMed
Jaffee, S. R., Caspi, A., Moffitt, T. E., & Taylor, A. (2004). Physical maltreatment victim to antisocial child: Evidence of an environmentally mediated process. Journal of Abnormal Psychology, 113, 44.CrossRefGoogle ScholarPubMed
Jaffee, S. R., & Price, T. S. (2007). Gene–environment correlations: A review of the evidence and implications for prevention of mental illness. Molecular Psychiatry, 12, 432442.CrossRefGoogle ScholarPubMed
Janssens, A., Goossens, L., Van Den Noortgate, W., Colpin, H., Verschueren, K., & Van Leeuwen, K. (2015). Parents’ and adolescents’ perspectives on parenting evaluating conceptual structure, measurement invariance, and criterion validity. Assessment, 22, 473489.CrossRefGoogle ScholarPubMed
Jönsson, E. G., Nöthen, M. M., Grünhage, F., Farde, L., Nakashima, Y., Propping, P., & Sedvall, G. C. (1999). Polymorphisms in the dopamine D2 receptor gene and their relationships to striatal dopamine receptor density of healthy volunteers. Molecular Psychiatry, 4, 290296.CrossRefGoogle ScholarPubMed
Justice Policy Institute. (2014). Sticker shock: Calculating the full price tag for youth incarceration. Washington, DC: Author.Google Scholar
Keller, M. C. (2014). Gene × Environment interaction studies have not properly controlled for potential confounders: The problem and the (simple) solution. Biological Psychiatry, 75, 1824.CrossRefGoogle Scholar
Kelley, A. E., Schochet, T., & Landry, C. F. (2004). Risk taking and novelty seeking in adolescence: Introduction to part I. Annals of the New York Academy of Sciences, 1021, 2732.CrossRefGoogle ScholarPubMed
Kendler, K. S., Jacobson, K. C., Gardner, C. O., Gillespie, N., Aggen, S. A., & Prescott, C. A. (2007). Creating a social world: A developmental twin study of peer-group deviance. Archives of General Psychiatry, 64, 958965.CrossRefGoogle ScholarPubMed
Kendler, K. S., Jacobson, K., Myers, J. M., & Eaves, L. J. (2008). A genetically informative developmental study of the relationship between conduct disorder and peer deviance in males. Psychological Medicine, 38, 10011011.CrossRefGoogle ScholarPubMed
Kendler, K. S., Prescott, C. A., Myers, J., & Neale, M. C. (2003). The structure of genetic and environmental risk factors for common psychiatric and substance use disorders in men and women. Archives of General Psychiatry, 60, 929937.CrossRefGoogle ScholarPubMed
Kim-Cohen, J., Caspi, A., Taylor, A., Williams, B., Newcombe, R., Craig, I. W., & Moffitt, T. E. (2006). MAOA, maltreatment, and gene–environment interaction predicting children's mental health: New evidence and a meta-analysis. Molecular Psychiatry, 11, 903913.CrossRefGoogle ScholarPubMed
Knafo, A., & Jaffee, S. R. (2013). Gene–environment correlation in developmental psychopathology. Development and Psychopathology, 25, 16.CrossRefGoogle ScholarPubMed
Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the 14th International Joint Conference on Artificial Engineering (pp. 11371145). San Francisco, CA: Morgan Kaufmann.Google Scholar
Kok, B. E., & Fredrickson, B. L. (2010). Upward spirals of the heart: Autonomic flexibility, as indexed by vagal tone, reciprocally and prospectively predicts positive emotions and social connectedness. Biological Psychology, 85, 432436.CrossRefGoogle ScholarPubMed
Krueger, R. F., Markon, K. E., Patrick, C. J., Benning, S. D., & Kramer, M. D. (2007). Linking antisocial behavior, substance use, and personality: An integrative quantitative model of the adult externalizing spectrum. Journal of Abnormal Psychology, 116, 645.CrossRefGoogle ScholarPubMed
Kuperminc, G. P., & Allen, J. P. (2001). Social orientation: Problem behavior and motivations toward interpersonal problem solving among high risk adolescents. Journal of Youth and Adolescence, 30, 597622.CrossRefGoogle ScholarPubMed
Lahey, B. B., Van Hulle, C. A., Singh, A. L., Waldman, I. D., & Rathouz, P. J. (2011). Higher-order genetic and environmental structure of prevalent forms of child and adolescent psychopathology. Archives of General Psychiatry, 68, 181189.CrossRefGoogle ScholarPubMed
Latendresse, S. J., Bates, J. E., Goodnight, J. A., Lansford, J. E., Budde, J. P., Goate, A., … Dick, D. M. (2011). Differential susceptibility to adolescent externalizing trajectories: Examining the interplay between CHRM2 and peer group antisocial behavior. Child Development, 82, 17971814.CrossRefGoogle ScholarPubMed
Lee, S. S. (2011). Deviant peer affiliation and antisocial behavior: Interaction with monoamine oxidase A (MAOA) genotype. Journal of Abnormal Child Psychology, 39, 321332.CrossRefGoogle ScholarPubMed
Li, J. J., Berk, M. S., & Lee, S. S. (2013). Differential susceptibility in longitudinal models of gene–environment interaction for adolescent depression. Development and Psychopathology, 25, 9911003.CrossRefGoogle ScholarPubMed
Liao, D. L., Hong, C. J., Shih, H. L., & Tsai, S. J. (2004). Possible association between serotonin transporter promoter region polymorphism and extremely violent crime in Chinese males. Neuropsychobiology, 50, 284287.CrossRefGoogle ScholarPubMed
Little, T. D. (2013). Longitudinal structural equation modeling. New York: Guilford Press.Google Scholar
Lo, Y., Mendell, N. R., & Rubin, D. B. (2001). Testing the number of components in a normal mixture. Biometrika, 88, 767778.CrossRefGoogle Scholar
Loeber, R., & Schmaling, K. B. (1985). Empirical evidence for overt and covert patterns of antisocial conduct problems: A meta-analysis. Journal of Abnormal Child Psychology, 13, 337353.CrossRefGoogle Scholar
Marceau, K., Palmer, R. H., Neiderhiser, J. M., Smith, T. F., McGeary, J. E., & Knopik, V. S. (2016). Passive rGE or developmental gene-environment cascade? An investigation of the role of xenobiotic metabolism genes in the association between smoke exposure during pregnancy and child birth weight. Behavior Genetics, 46, 365377.CrossRefGoogle ScholarPubMed
Massoglia, M. (2006). Desistance or displacement? The changing patterns of offending from adolescence to young adulthood. Journal of Quantitative Criminology, 22, 215239.CrossRefGoogle Scholar
Masten, C. L., Eisenberger, N. I., Borofsky, L. A., Pfeifer, J. H., McNealy, K., Mazziotta, J. C., & Dapretto, M. (2009). Neural correlates of social exclusion during adolescence: Understanding the distress of peer rejection. Social Cognitive and Affective Neuroscience, 4, 143157.CrossRefGoogle ScholarPubMed
Mazerolle, P., Brame, R., Paternoster, R., Piquero, A., & Dean, C. (2000). Onset age, persistence, and offending versatility: Comparisons across gender. Criminology, 38, 11431172.CrossRefGoogle Scholar
McNeely, C. A., Nonnemaker, J. M., & Blum, R. W. (2002). Promoting school connectedness: Evidence from the national longitudinal study of adolescent health. Journal of School Health, 72, 138146.CrossRefGoogle ScholarPubMed
Mercer, N., Keijsers, L., Crocetti, E., Branje, S., & Meeus, W. (2016). Adolescent abstention from delinquency: Examining the mediating role of time spent with (delinquent) peers. Journal of Research on Adolescence. Advance online publication.CrossRefGoogle ScholarPubMed
Moffitt, T. E. (1993). Adolescence-limited and life-course-persistent antisocial behavior: A developmental taxonomy. Psychological Review, 100, 674.CrossRefGoogle ScholarPubMed
Moffitt, T. E. (2001). Sex differences in antisocial behaviour: Conduct disorder, delinquency, and violence in the Dunedin Longitudinal Study. New York: Cambridge University Press.CrossRefGoogle Scholar
Moffitt, T. E. (2003). Life course persistent and adolescence-limited antisocial behavior: A 10-year research review and a research agenda. In Lahey, B. B., Moffitt, T. E., & Caspi, A. (Eds.), Causes of conduct disorder and juvenile delinquency (pp. 4975). New York: Guilford Press.Google Scholar
Moffitt, T. E., Caspi, A., Harrington, H., & Milne, B. J. (2002). Males on the life-course-persistent and adolescence-limited antisocial pathways: Follow-up at age 26 years. Development and Psychopathology, 14, 179207.CrossRefGoogle ScholarPubMed
Moore, T. M., Scarpa, A., & Raine, A. (2002). A meta-analysis of serotonin metabolite 5-HIAA and antisocial behavior. Aggressive Behavior, 28, 299316.CrossRefGoogle Scholar
Mrug, S., & Windle, M. (2009). Bidirectional influences of violence exposure and adjustment in early adolescence: Externalizing behaviors and school connectedness. Journal of Abnormal Child Psychology, 37, 611623.CrossRefGoogle ScholarPubMed
Muthén, L. K., & Muthén, B. O. (2015). Mplus user's guide (7th ed.). Los Angeles, CA: Author.Google Scholar
Nagin, D. S., & Tremblay, R. E. (2005). Developmental trajectory groups: Fact or a useful statistical fiction? Criminology, 43, 873904.CrossRefGoogle Scholar
Nikolova, Y. S., Ferrell, R. E., Manuck, S. B., & Hariri, A. R. (2011). Multilocus genetic profile for dopamine signaling predicts ventral striatum reactivity. Neuropsychopharmacology, 36, 19401947.CrossRefGoogle ScholarPubMed
Nobile, M., Giorda, R., Marino, C., Carlet, O., Pastore, V., Vanzin, L., … Battaglia, M. (2007). Socioeconomic status mediates the genetic contribution of the dopamine receptor D4 and serotonin transporter linked promoter region repeat polymorphisms to externalization in preadolescence. Development and Psychopathology, 19, 11471160.CrossRefGoogle ScholarPubMed
Noble, E. P., Gottschalk, L. A., Fallon, J. H., Ritchie, T. L., & Wu, J. C. (1997). D 2 dopamine receptor polymorphism and brain regional glucose metabolism. American Journal of Medical Genetics, 74, 162166.3.0.CO;2-W>CrossRefGoogle Scholar
Nylund, K. L., Asparouhov, T., & Muthén, B. O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling, 14, 535569.CrossRefGoogle Scholar
Odgers, C. L., Moffitt, T. E., Broadbent, J. M., Dickson, N., Hancox, R. J., Harrington, H., … Caspi, A. (2008). Female and male antisocial trajectories: From childhood origins to adult outcomes. Development and Psychopathology, 20, 673716.CrossRefGoogle ScholarPubMed
Pappa, I., St. Pourcain, B., Benke, K., Cavadino, A., Hakulinen, C., Nivard, M. G., … Evans, D. M. (2016). A genome-wide approach to children's aggressive behavior: The EAGLE consortium. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 171, 562572.CrossRefGoogle ScholarPubMed
Pereira, F., Mitchell, T., & Botvinick, M. (2009). Machine learning classifiers and fMRI: A tutorial overview. NeuroImage, 45, S199S209.CrossRefGoogle ScholarPubMed
Pingault, J. B., Viding, E., Galéra, C., Greven, C. U., Zheng, Y., Plomin, R., & Rijsdijk, F. (2015). Genetic and environmental influences on the developmental course of attention-deficit/hyperactivity disorder symptoms from childhood to adolescence. JAMA Psychiatry, 72, 651658.CrossRefGoogle ScholarPubMed
Plomin, R., Haworth, C. M., & Davis, O. S. (2009). Common disorders are quantitative traits. Nature Reviews Genetics, 10, 872878.CrossRefGoogle ScholarPubMed
Pohjalainen, T., Rinne, J. O., Någren, K., Lehikoinen, P., Anttila, K., Syvälahti, E. K. G., & Hietala, J. (1998). The A1 allele of the human D~ 2 dopamine receptor gene predicts low D~ 2 receptor availability in healthy volunteers. Molecular Psychiatry, 3, 256260.CrossRefGoogle Scholar
Qian, Q. J., Liu, J., Wang, Y. F., Yang, L., Guan, L. L., & Faraone, S. V. (2009). Attention deficit hyperactivity disorder comorbid oppositional defiant disorder and its predominately inattentive type: Evidence for an association with COMT but not MAOA in a Chinese sample. Behavioral and Brain Functions, 5, 1.CrossRefGoogle ScholarPubMed
Resnick, M. D., Bearman, P. S., Blum, R. W., Bauman, K. E., Harris, K. M., Jones, J., … Ireland, M. (1997). Protecting adolescents from harm: Findings from the National Longitudinal Study on Adolescent Health. Journal of the American Medical Association, 278, 823832.CrossRefGoogle ScholarPubMed
Rhee, S. H., & Waldman, I. D. (2002). Genetic and environmental influences on antisocial behavior: A meta-analysis of twin and adoption studies. Psychological Bulletin, 128, 490.CrossRefGoogle ScholarPubMed
Sabol, S. Z., Hu, S., & Hamer, D. (1998). A functional polymorphism in the monoamine oxidase A gene promoter. Human Genetics, 103, 273279.CrossRefGoogle ScholarPubMed
Sakai, Y., Nishikawa, M., Leyton, M., Benkelfat, C., Young, S. N., & Diksic, M. (2006). Cortical trapping of α-[11 C] methyl-L-tryptophan, an index of serotonin synthesis, is lower in females than males. NeuroImage, 33, 815824.CrossRefGoogle ScholarPubMed
Salvatore, J. E., & Dick, D. M. (2016). Genetic influences on conduct disorder. Neuroscience & Biobehavioral Reviews. Advance online publication.Google Scholar
Samek, D. R., Hicks, B. M., Keyes, M. A., Iacono, W. G., & McGue, M. (2016). Antisocial peer affiliation and externalizing disorders: Evidence for Gene × Environment × Development interaction. Development and Psychopathology. Advance online publication.Google Scholar
Sampson, R. J., & Laub, J. H. (2003). Life-course desisters? Trajectories of crime among delinquent boys followed to age 70. Criminology, 41, 555592.CrossRefGoogle Scholar
Schlüter, T., Winz, O., Henkel, K., Prinz, S., Rademacher, L., Schmaljohann, J., … Mottaghy, F. M. (2013). The impact of dopamine on aggression: An [18F]-FDOPA PET Study in healthy males. Journal of Neuroscience, 33, 1688916896.CrossRefGoogle ScholarPubMed
Seo, D., Patrick, C. J., & Kennealy, P. J. (2008). Role of serotonin and dopamine system interactions in the neurobiology of impulsive aggression and its comorbidity with other clinical disorders. Aggression and Violent Behavior, 13, 383395.CrossRefGoogle ScholarPubMed
Shochet, I. M., Dadds, M. R., Ham, D., & Montague, R. (2006). School connectedness is an underemphasized parameter in adolescent mental health: Results of a community prediction study. Journal of Clinical Child and Adolescent Psychology, 35, 170179.CrossRefGoogle ScholarPubMed
Simonson, M. A., Wills, A. G., Keller, M. C., & McQueen, M. B. (2011). Recent methods for polygenic analysis of genome-wide data implicate an important effect of common variants on cardiovascular disease risk. BMC Medical Genetics, 12, 146.CrossRefGoogle ScholarPubMed
Smolen, A., Whitsel, E. A., Tabor, J., Killeya-Jones, L. A., Cuthbertson, C. C., Hussey, J. M., … Harris, K. M. (2013). Add Health documentation: Candidate genes. Retrieved from http://www.cpc.unc.edu/projects/addhealth/documentation/guides/DNA_documentation.pdf Google Scholar
Soderstrom, H., Blennow, K., Manhem, A., & Forsman, A. (2001). CSF studies in violent offenders: 5-HIAA as a negative and HVA as a positive predictor of psychopathy. Journal of Neural Transmission, 108, 869878.CrossRefGoogle ScholarPubMed
Stice, E., Yokum, S., Burger, K., Epstein, L., & Smolen, A. (2012). Multilocus genetic composite reflecting dopamine signaling capacity predicts reward circuitry responsivity. Journal of Neuroscience, 32, 1009310100.CrossRefGoogle ScholarPubMed
Tackett, J. L., Daoud, S. L., De Bolle, M., & Burt, S. A. (2013). Is relational aggression part of the externalizing spectrum? A bifactor model of youth antisocial behavior. Aggressive Behavior, 39, 149159.CrossRefGoogle ScholarPubMed
Taylor, J., Iacono, W. G., & McGue, M. (2000). Evidence for a genetic etiology of early-onset delinquency. Journal of Abnormal Psychology, 109, 634643.CrossRefGoogle ScholarPubMed
Thibodeau, E. L., Cicchetti, D., & Rogosch, F. A. (2015). Child maltreatment, impulsivity, and antisocial behavior in African American children: Moderation effects from a cumulative dopaminergic gene index. Development and Psychopathology, 27, 16211636.CrossRefGoogle ScholarPubMed
Thompson, R., & Tabone, J. K. (2010). The impact of early alleged maltreatment on behavioral trajectories. Child Abuse & Neglect, 34, 907916.CrossRefGoogle ScholarPubMed
Tidey, J. W., & Miczek, K. A. (1996). Social defeat stress selectively alters mesocorticolimbic dopamine release: An in vivo microdialysis study. Brain Research, 721, 140149.CrossRefGoogle ScholarPubMed
Tielbeek, J. J., Karlsson Linnér, R., Beers, K., Posthuma, D., Popma, A., & Polderman, T. J. (2016). Meta-analysis of the serotonin transporter promoter variant (5-HTTLPR) in relation to adverse environment and antisocial behavior. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 171, 748760.CrossRefGoogle ScholarPubMed
Tielbeek, J. J., Medland, S. E., Benyamin, B., Byrne, E. M., Heath, A. C., Madden, P. A., … Verweij, K. J. (2012). Unraveling the genetic etiology of adult antisocial behavior: A genome-wide association study. PLOS ONE, 7, e45086.CrossRefGoogle ScholarPubMed
Tomer, R., Slagter, H. A., Christian, B. T., Fox, A. S., King, C. R., Murali, D., … Davidson, R. J. (2014). Love to win or hate to lose? Asymmetry of dopamine D2 receptor binding predicts sensitivity to reward versus punishment. Journal of Cognitive Neuroscience, 26, 10391048.CrossRefGoogle ScholarPubMed
Tripp, G., & Wickens, J. R. (2008). Research review: Dopamine transfer deficit: A neurobiological theory of altered reinforcement mechanisms in ADHD. Journal of Child Psychology and Psychiatry, 49, 691704.CrossRefGoogle ScholarPubMed
Tung, I., & Lee, S. S. (2016). Latent trajectories of adolescent antisocial behavior: Serotonin transporter linked polymorphic region (5-HTTLPR) genotype influences sensitivity to perceived parental support. Development and Psychopathology. Advance online publication.Google Scholar
Tuvblad, C., Grann, M., & Lichtenstein, P. (2006). Heritability for adolescent antisocial behavior differs with socioeconomic status: Gene–environment interaction. Journal of Child Psychology and Psychiatry, 47, 734743.CrossRefGoogle ScholarPubMed
Van Erp, A. M., & Miczek, K. A. (2000). Aggressive behavior, increased accumbal dopamine, and decreased cortical serotonin in rats. Journal of Neuroscience, 20, 93209325.CrossRefGoogle ScholarPubMed
Van Hulle, C. A., Rodgers, J. L., D'Onofrio, B. M., Waldman, I. D., & Lahey, B. B. (2007). Sex differences in the causes of self-reported adolescent delinquency. Journal of Abnormal Psychology, 116, 236.CrossRefGoogle ScholarPubMed
van IJzendoorn, M. H., Belsky, J., & Bakermans-Kranenburg, M. J. (2012). Serotonin transporter genotype 5HTTLPR as a marker of differential susceptibility? A meta-analysis of child and adolescent gene-by-environment studies. Translational Psychiatry, 2, e147.CrossRefGoogle ScholarPubMed
VanNess, S. H., Owens, M. J., & Kilts, C. D. (2005). The variable number of tandem repeats element in DAT1 regulates in vitro dopamine transporter density. BMC Genetics, 6, 1.CrossRefGoogle ScholarPubMed
Van Tol, H. H., Wu, C. M., Guan, H. C., Ohara, K., Bunzow, J. R., Civelli, O., … Jovanovic, V. (1992). Multiple dopamine D4 receptor variants in the human population. Nature, 358, 149152.Google ScholarPubMed
Veroude, K., Zhang-James, Y., Fernàndez-Castillo, N., Bakker, M. J., Cormand, B., & Faraone, S. V. (2016). Genetics of aggressive behavior: An overview. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 171, 343.CrossRefGoogle Scholar
Walker, S. O., & Plomin, R. (2006). Nature, nurture, and perceptions of the classroom environment as they relate to teacher-assessed academic achievement: A twin study of nine-year-olds. Educational Psychology, 26, 541561.CrossRefGoogle Scholar
Walters, G. D., & Ruscio, J. (2013). Trajectories of youthful antisocial behavior: Categories or continua? Journal of Abnormal Child Psychology, 41, 653666.CrossRefGoogle ScholarPubMed
Whittle, S., Simmons, J. G., Dennison, M., Vijayakumar, N., Schwartz, O., Yap, M. B., … Allen, N. B. (2014). Positive parenting predicts the development of adolescent brain structure: A longitudinal study. Developmental Cognitive Neuroscience, 8, 717.CrossRefGoogle ScholarPubMed
Wichers, M., Wigman, J. T. W., & Myin-Germeys, I. (2015). Micro-level affect dynamics in psychopathology viewed from complex dynamical system theory. Emotion Review, 7, 362367.CrossRefGoogle Scholar
Widom, C. S., & Brzustowicz, L. M. (2006). MAOA and the “cycle of violence”: Childhood abuse and neglect, MAOA genotype, and risk for violent and antisocial behavior. Biological Psychiatry, 60, 684689.CrossRefGoogle ScholarPubMed
Windhorst, D. A., Mileva-Seitz, V. R., Rippe, R. C., Tiemeier, H., Jaddoe, V. W., Verhulst, F. C., … Bakermans-Kranenburg, M. J. (2016). Beyond main effects of gene-sets: Harsh parenting moderates the association between a dopamine gene-set and child externalizing behavior. Brain and Behavior. Advance online publication.CrossRefGoogle Scholar
Wray, N. R., Yang, J., Hayes, B. J., Price, A. L., Goddard, M. E., & Visscher, P. M. (2013). Pitfalls of predicting complex traits from SNPs. Nature Reviews Genetics, 14, 507515.CrossRefGoogle ScholarPubMed
Zheng, Y., & Cleveland, H. H. (2013). Identifying gender-specific developmental trajectories of nonviolent and violent delinquency from adolescence to young adulthood. Journal of Adolescence, 36, 371381.CrossRefGoogle ScholarPubMed
Zheng, Y., & Cleveland, H. H. (2015). Differential genetic and environmental influences on developmental trajectories of antisocial behavior from adolescence to young adulthood. Journal of Adolescence, 45, 204213.CrossRefGoogle ScholarPubMed
Zubieta, J. K., Heitzeg, M. M., Smith, Y. R., Bueller, J. A., Xu, K., Xu, Y., … Goldman, D. (2003). COMT val158met genotype affects μ-opioid neurotransmitter responses to a pain stressor. Science, 299, 12401243.CrossRefGoogle ScholarPubMed
Supplementary material: File

Li supplementary material 1

Li supplementary material

Download Li supplementary material 1(File)
File 37.5 KB