Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T23:37:11.279Z Has data issue: false hasContentIssue false

A differential susceptibility analysis reveals the “who and how” about adolescents' responses to preventive interventions: Tests of first- and second-generation Gene × Intervention hypotheses

Published online by Cambridge University Press:  02 February 2015

Gene H. Brody*
Affiliation:
University of Georgia
Tianyi Yu
Affiliation:
University of Georgia
Steven R. H. Beach
Affiliation:
University of Georgia
*
Address correspondence and reprint requests to: Gene H. Brody, Center for Family Research, University of Georgia, 1095 College Station Road, Athens, GA 30602-4527; E-mail: gbrody@uga.edu.

Abstract

This study was designed to investigate a genetic moderation effect of dopamine receptor 4 gene (DRD4) alleles that have seven or more repeats (long alleles) on an intervention to deter drug use among rural African American adolescents in high-risk families. Adolescents (N = 291, M age = 17) were assigned randomly to the Adults in the Making (AIM) program or to a control condition and were followed for 27.5 months. Adolescents provided data on drug use and vulnerability cognitions three times after pretest. Pretest assessments of caregiver depressive symptoms, disruption in the home, and support toward the adolescent were used to construct a family risk index. Adolescents living in high-risk families who carried at least one DRD4 long allele and were assigned to the control condition evinced greater escalations in drug use than did (a) adolescents who lived in high-risk families, carried the DRD4 long allele, and were assigned to AIM, or (b) adolescents assigned to either condition who carried no DRD4 long alleles. AIM-induced reductions in vulnerability cognitions were responsible for the Family Risk × AIM × DRD4 status drug use prevention effects. These findings support differential susceptibility predictions and imply that prevention effects on genetically susceptible individuals may be underestimated.

Type
Special Section Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asghari, V., Sanyal, S., Buchwaldt, S., Paterson, A., Jovanovic, V., & Van Tol, H. H. M. (1995). Modulation of intracellular cyclic AMP levels by different human dopamine D4 receptor variants. Journal of Neurochemistry, 65, 11571165.CrossRefGoogle ScholarPubMed
Asghari, V., Schoots, O., Van Kats, S., Ohara, K., Jovanovic, V., Guan, H.-C., et al. (1994). Dopamine D4 receptor repeat: Analysis of different native and mutant forms of the human and rat genes. Molecular Pharmacology, 46, 364373.Google ScholarPubMed
Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2011). Differential susceptibility to rearing environment depending on dopamine-related genes: New evidence and a meta-analysis. Development and Psychopathology, 23, 3952.CrossRefGoogle ScholarPubMed
Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (in press). The hidden efficacy of interventions: Gene × Environment experiments from a differential susceptibility perspective. Annual Review of Psychology.Google Scholar
Bakermans-Kranenburg, M. J., van IJzendoorn, M. H., Pijlman, F. T. A., Mesman, J., & Juffer, F. (2008). Experimental evidence for differential susceptibility: Dopamine D4 receptor polymorphism (DRD4 VNTR) moderates intervention effects on toddlers' externalizing behavior in a randomized controlled trial. Developmental Psychology, 44, 293300.CrossRefGoogle ScholarPubMed
Barr, C. S., Newman, T. K., Lindell, S., Shannon, C., Champoux, M., Lesch, K. P., et al. (2004). Interaction between serotonin transporter gene variation and rearing condition in alcohol preference and consumption in female primates. Archives of General Psychiatry, 61, 11461152.CrossRefGoogle ScholarPubMed
Baumeister, R. F., & Scher, S. J. (1988). Self-defeating behavior patterns among normal individuals: Review and analysis of common self-destructive tendencies. Psychological Bulletin, 104, 322.CrossRefGoogle ScholarPubMed
Beach, S. R. H., Brody, G. H., Lei, M.-K., & Philibert, R. A. (2010). Differential susceptibility to parenting among African American youths: Testing the DRD4 hypothesis. Journal of Family Psychology, 24, 513521.CrossRefGoogle ScholarPubMed
Belsky, J., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2007). For better and for worse: Differential susceptibility to environmental influences. Current Directions in Psychological Science, 16, 300304.CrossRefGoogle Scholar
Belsky, J., & Pluess, M. (2009). Beyond diathesis stress: Differential susceptibility to environmental influences. Psychological Bulletin, 135, 885908.CrossRefGoogle ScholarPubMed
Belsky, J., & Pluess, M. (2013). Genetic moderation of early child-care effects on social functioning across childhood: A developmental analysis. Child Development, 84, 12091225.CrossRefGoogle ScholarPubMed
Boatright, S. R. (2005). The Georgia county guide (24th ed.). Athens, GA: Center for Agribusiness and Economic Development.Google Scholar
Bradley, S. L., Dodelzon, K., Sandhu, H. K., & Philibert, R. A. (2005). Relationship of serotonin transporter gene polymorphisms and haplotypes to mRNA transcription. American Journal of Medical Genetics, 136B, 5861.Google ScholarPubMed
Brody, G. H., Beach, S. R. H., Hill, K. G., Howe, G. W., Prado, G., & Fullerton, S. M. (2013). Using genetically informed, randomized prevention trials to test etiological hypotheses about child and adolescent drug use and psychopathology. American Journal of Public Health, 103 (Suppl. 1), S19S24.CrossRefGoogle Scholar
Brody, G. H., Chen, Y.-F., Beach, S. R. H., Kogan, S. M., Yu, T., DiClemente, R. J., et al. (2013). Differential sensitivity to prevention programming: A dopaminergic polymorphism-enhanced prevention effect on protective parenting and adolescent substance use. Health Psychology. Advance online publication.Google Scholar
Brody, G. H., Chen, Y.-F., & Kogan, S. M. (2010). A cascade model connecting life stress to risk behavior among rural African American emerging adults. Development and Psychopathology, 22, 667678.CrossRefGoogle ScholarPubMed
Brody, G. H., Chen, Y.-F., Kogan, S. M., Smith, K., & Brown, A. C. (2010). Buffering effects of a family-based intervention for African American emerging adults. Journal of Marriage and Family, 72, 14261435.CrossRefGoogle ScholarPubMed
Brody, G. H., Chen, Y.-F., Kogan, S. M., Yu, T., Molgaard, V. K., DiClemente, R. J., et al. (2012). Family-centered program to prevent substance use, conduct problems, and depressive symptoms in Black adolescents. Pediatrics, 129, 108115.CrossRefGoogle ScholarPubMed
Brody, G. H., Chen, Y.-F., Yu, T., Beach, S. R. H., Kogan, S. M., Simons, R. L., et al. (2012). Life stress, the dopamine receptor gene, and emerging adult drug use trajectories: A longitudinal, multilevel, mediated moderation analysis. Development and Psychopathology, 24, 941951.CrossRefGoogle ScholarPubMed
Brody, G. H., & Ge, X. (2001). Linking parenting processes and self-regulation to psychological functioning and alcohol use during early adolescence. Journal of Family Psychology, 15, 8294.CrossRefGoogle ScholarPubMed
Brody, G. H., Murry, V. M., Gerrard, M., Gibbons, F. X., Molgaard, V., McNair, L. D., et al. (2004). The Strong African American Families program: Translating research into prevention programming. Child Development, 75, 900917.CrossRefGoogle ScholarPubMed
Brody, G. H., Murry, V. M., Kim, S., & Brown, A. C. (2002). Longitudinal pathways to competence and psychological adjustment among African American children living in rural single-parent households. Child Development, 73, 15051516.CrossRefGoogle ScholarPubMed
Brody, G. H., Yu, T., Chen, Y.-F., Kogan, S. M., & Smith, K. (2012). The Adults in the Making program: Long-term protective stabilizing effects on alcohol use and substance use problems for rural African American emerging adults. Journal of Consulting and Clinical Psychology, 80, 1728.CrossRefGoogle ScholarPubMed
Chang, F.-M., Kidd, J. R., Livak, K. J., Pakstis, A. J., & Kidd, K. K. (1996). The world-wide distribution of allele frequencies at the human dopamine D4 receptor locus. Human Genetics, 98, 91101.CrossRefGoogle ScholarPubMed
Chassin, L. A., Presson, C. C., Sherman, S. J., Corty, E., & Olshavsky, R. W. (1984). Predicting the onset of cigarette smoking in adolescents: A longitudinal study. Journal of Applied Social Psychology, 14, 224243.CrossRefGoogle Scholar
Chassin, L. A., Tetzloff, C., & Hershey, M. (1985). Self-image and social-image factors in adolescent alcohol use. Journal of Studies on Alcohol, 46, 3947.CrossRefGoogle ScholarPubMed
Chen, C., Burton, M., Greenberger, E., & Dmitrieva, J. (1999). Population migration and the variation of dopamine D4 receptor (DRD4) allele frequencies around the globe. Evolution and Human Behavior, 20, 309324.CrossRefGoogle Scholar
Cleveland, M. J., Gibbons, F. X., Gerrard, M., Pomery, E. A., & Brody, G. H. (2005). The impact of parenting on risk cognitions and risk behavior: A study of mediation and moderation in a panel of African American adolescents. Child Development, 76, 900916.CrossRefGoogle Scholar
DiClemente, R. J., Wingood, G. M., Crosby, R., Sionean, C., Cobb, B. K., Harrington, K., et al. (2001). Parental monitoring: Association with adolescents' risk behaviors. Pediatrics, 107, 13631368.CrossRefGoogle ScholarPubMed
Eisenberg, D. T. A., MacKillop, J., Modi, M., Beauchemin, J., Dang, D., Lisman, S. A., et al. (2007). Examining impulsivity as an endophenotype using a behavioral approach: A DRD2 Taq1 A and DRD4 48-bp VNTR association study. Behavioral and Brain Functions, 3, Article 2.CrossRefGoogle Scholar
Ellis, B. J., Boyce, W. T., Belsky, J., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2011). Differential susceptibility to the environment: An evolutionary–neurodevelopmental theory. Development and Psychopathology, 23, 728.CrossRefGoogle Scholar
Franken, I. H. A., Stam, C. J., Hendriks, V. M., & van den Brink, W. (2003). Neurophysiological evidence for abnormal cognitive processing of drug cues in heroin dependence. Psychopharmacology, 170, 205212.CrossRefGoogle ScholarPubMed
Gore, S. L., & Aseltine, R. H. Jr. (2003). Racial and ethnic differences in depressed mood following the transition from high school. Journal of Health and Social Behavior, 44, 370390.CrossRefGoogle ScholarPubMed
Howe, G. W., Reiss, D., & Yuh, J. (2002). Can prevention trials test theories of etiology? Development and Psychopathology, 14, 673694.CrossRefGoogle ScholarPubMed
Hyman, S. E., Malenka, R. C., & Nestler, E. J. (2006). Neural mechanisms of addiction: The role of reward-related learning and memory. Annual Review of Neuroscience, 29, 565598.CrossRefGoogle ScholarPubMed
Johnston, L. D., O'Malley, P. M., & Bachman, J. G. (2000). Monitoring the Future national survey results on drug use, 1975–1999: Vol. 1. Secondary school students (NIH Publication No. 00-4802). Bethesda, MD: National Institute on Drug Abuse.Google Scholar
Kegel, C. A. T., Bus, A. G., & van IJzendoorn, M. H. (2011). Differential susceptibility in early literacy instruction through computer games: The role of the dopamine D4 receptor gene (DRD4). Mind, Brain, and Education, 5, 7178.CrossRefGoogle Scholar
Kreek, M. J., Nielsen, D. A., Butelman, E. R., & LaForge, K. S. (2005). Genetic influences on impulsivity, risk taking, stress responsivity and vulnerability to drug abuse and addiction. Nature Neuroscience, 8, 14501457.CrossRefGoogle ScholarPubMed
Kurdek, L. A. (1994). Conflict resolution styles in gay, lesbian, heterosexual nonparent, and heterosexual parent couples. Journal of Marriage and the Family, 56, 705722.CrossRefGoogle Scholar
Laucht, M., Becker, K., Blomeyer, D., & Schmidt, M. H. (2007). Novelty seeking involved in mediating the association between the dopamine D4 receptor gene exon III polymorphism and heavy drinking in male adolescents: Results from a high-risk community sample. Biological Psychiatry, 61, 8792.CrossRefGoogle ScholarPubMed
Little, T. D., Bovaird, J. A., & Card, N. A. (Eds.). (2007). Modeling contextual effects in longitudinal studies. Mahwah, NJ: Erlbaum.CrossRefGoogle Scholar
Matheny, A. P. Jr., Wachs, T. D., Ludwig, J. L., & Phillips, K. (1995). Bringing order out of chaos: Psychometric characteristics of the Confusion, Hubbub, and Order Scale. Journal of Applied Developmental Psychology, 16, 429444.CrossRefGoogle Scholar
McGeary, J. (2009). The DRD4 exon 3 VNTR polymorphism and addiction-related phenotypes: A review. Pharmacology, Biochemistry and Behavior, 93, 222229.CrossRefGoogle ScholarPubMed
Muthén, B. O. (2001). Second-generation structural equation modeling with a combination of categorical and continuous latent variables: New opportunities for latent class/latent growth modeling. In Collins, L. M. & Sayer, A. (Eds.), New methods for the analysis of change (pp. 291322). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
Muthén, B. O., & Muthén, L. K. (1998–2012). Mplus users' guide (Version 7). Los Angeles, CA: Author.Google Scholar
Muthén, L. K., & Curran, P. J. (1997). General longitudinal modeling of individual differences in experimental designs: A latent variable framework for analysis and power estimation. Psychological Methods, 2, 371402.CrossRefGoogle Scholar
O'Connell, M. E., Boat, T., & Warner, K. E. (2009). Preventing mental, emotional, and behavioral disorders among young people: Progress and possibilities. Washington, DC: National Academies Press.Google Scholar
Pauli-Pott, U., Friedl, S., Hinney, A., & Hebebrand, J. (2009). Serotonin transporter gene polymorphism (5-HTTLPR), environmental conditions, and developing negative emotionality and fear in early childhood. Journal of Neural Transmission, 116, 503512.CrossRefGoogle ScholarPubMed
Pomery, E. A., Gibbons, F. X., Reis-Bergan, M., & Gerrard, M. (2009). From willingness to intention: Experience moderates the shift from reactive to reasoned behavior. Personality and Social Psychology Bulletin, 35, 894908.CrossRefGoogle ScholarPubMed
Preacher, K. J., Rucker, D. D., & Hayes, A. F. (2007). Addressing moderated mediation hypotheses: Theory, methods, and prescriptions. Multivariate Behavioral Research, 42, 185227.CrossRefGoogle ScholarPubMed
Prinz, R. J., Foster, S. L., Kent, R. N., & O'Leary, K. D. (1979). Multivariate assessment of conflict in distressed and nondistressed mother–adolescent dyads. Journal of Applied Behavior Analysis, 12, 691700.CrossRefGoogle ScholarPubMed
Radloff, L. S. (1977). The CES–D Scale: A self-report depression scale for research in the general population. Applied Psychological Measurement, 1, 385401.CrossRefGoogle Scholar
Repetti, R. L., Taylor, S. E., & Seeman, T. E. (2002). Risky families: Family social environments and the mental and physical health of offspring. Psychological Bulletin, 128, 330336.CrossRefGoogle ScholarPubMed
Rutter, M. L. (2005). Environmentally mediated risks for psychopathology: Research strategies and findings. Journal of the American Academy of Child & Adolescent Psychiatry, 44, 318.CrossRefGoogle ScholarPubMed
Rutter, M. L., Moffitt, T. E., & Caspi, A. (2006). Gene–environment interplay and psychopathology: Multiple varieties but real effects. Journal of Child Psychology and Psychiatry, 47, 226261.CrossRefGoogle ScholarPubMed
Schoots, O., & Van Tol, H. H. M. (2003). The human dopamine D4 receptor repeat sequences modulate expression. Pharmacogenetics Journal, 3, 343348.CrossRefGoogle ScholarPubMed
Stone, A. L., Becker, L. G., Huber, A. M., & Catalano, R. F. (2012). Review of risk and protective factors of substance use and problem use in emerging adulthood. Addictive Behaviors, 37, 747775.CrossRefGoogle ScholarPubMed
van IJzendoorn, M. H. (2013, April). Genetic differential susceptibility experiments. Paper presented at the Jacobs Foundation Conference on Genetic Moderation of Intervention Effects, Marbach Castle, Öhningen, Germany.Google Scholar
Warshaw, P. R., & Davis, F. D. (1985). Disentangling behavioral intention and behavioral expectation. Journal of Experimental Social Psychology, 21, 213228.CrossRefGoogle Scholar
Wills, T. A., Gibbons, F. X., Gerrard, M., & Brody, G. H. (2000). Protection and vulnerability processes relevant for early onset of substance use: A test among African American children. Health Psychology, 19, 253263.CrossRefGoogle ScholarPubMed
Wills, T. A., Gibbons, F. X., Gerrard, M., Murry, V. M., & Brody, G. H. (2003). Family communication and religiosity related to substance use and sexual behavior in early adolescence: A test for pathways through self-control and prototype perceptions. Psychology of Additive Behaviors, 17, 312323.CrossRefGoogle ScholarPubMed