Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T08:33:34.108Z Has data issue: false hasContentIssue false

Dopamine receptor D4 gene moderates the effect of positive and negative peer experiences on later delinquency: The Tracking Adolescents' Individual Lives Survey study

Published online by Cambridge University Press:  08 November 2013

Tina Kretschmer*
Affiliation:
University of Groningen King's College London
Jan Kornelis Dijkstra
Affiliation:
University of Groningen
Johan Ormel
Affiliation:
University Medical Centre Groningen
Frank C. Verhulst
Affiliation:
Erasmus University Medical Center Rotterdam
René Veenstra
Affiliation:
University of Groningen
*
Address correspondence and reprint requests to: Tina Kretschmer, Faculty of Behavioral and Social Sciences, Interuniversity Centre of Social Science Theory and Methodology, University of Groningen, Grote Rozenstraat 31, 9712 TG Groningen, The Netherlands; E-mail: t.kretschmer@rug.nl.

Abstract

The quality of adolescents' relationships with peers can have a lasting impact on later psychosocial adjustment, mental health, and behavior. However, the effect of peer relations on later problem behavior is not uniformly strong, and genetic factors might influence this association. This study used four-wave longitudinal (11–19 years) data (n = 1,151) from the Tracking Adolescents' Individual Lives Survey, a Dutch cohort study into adolescent development to test whether the dopamine receptor D4 polymorphism moderates the impact of negative (i.e., victimization) and positive peer experiences (i.e., social well-being) on later delinquency. Contrary to our expectations, results showed that carriers of the dopamine receptor D4 gene 4-repeat homozygous variant instead of those carrying the 7-repeat allele were more susceptible to the effects of both peer victimization and social well-being on delinquency later in adolescence. Findings of our study are discussed in light of other studies into genetic moderation of peer effects on adolescent development and the possibility that developmental specifics in adolescence, such as maturation processes in brain structure and functioning, may affect the interplay of environmental and genetic factors in this period in life.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achenbach, T. M. (1990). Child Behavior Checklist/4–18. Burlington, VT: University of Vermont, Department of Psychiatry.Google Scholar
Arsenault, L., Bowes, L., & Shakoor, S. (2010). Bullying victimization in youths and mental health problems: “Much ado about nothing”? Psychological Medicine, 40, 717729.Google Scholar
Badcock, P. B., Moore, E., Williamson, E., Berk, M., Williams, L. J., Bjerkeset, O., et al. (2011). Gene–environment interaction in prediction of neuroticism: Risk attributable to the joint action of the DRD4 exon III 7-repeat allele and low maternal care. Australian Journal of Psychology, 63, 1825.CrossRefGoogle Scholar
Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2006). Gene–environment interaction of the dopamine D4 receptor (DRD4) and observed maternal insensitivity predicting externalizing behavior in preschoolers. Developmental Psychobiology, 48, 406409.CrossRefGoogle ScholarPubMed
Bakermans-Kranenburg, M., van IJzendoorn, M. H., Pijlman, F. T. A., Mesman, J., & Juffer, F. (2008). Experimental evidence for differential susceptibility: Dopamine D4 receptor polymorphism (DRD4 VNTR) moderates intervention effects on toddlers' externalizing behavior in a randomized controlled trial. Developmental Psychology, 44, 293300.Google Scholar
Beaver, K. M., Wright, J. P., DeLisi, M., & Vaughn, M. G. (2008). Desistance from delinquency: The marriage effect revisited and extended. Social Science Research, 37, 736752.CrossRefGoogle ScholarPubMed
Belsky, J., & Pluess, M. (2009). Beyond diathesis–stress: Differential susceptibility to environmental influence. Psychological Bulletin, 135, 885908.CrossRefGoogle Scholar
Benjet, C., Thompson, R. J., & Gotlib, I. H. (2010). 5-HTTLPR moderates the effect of relational peer victimization on depressive symptoms in adolescent girls. Journal of Child Psychology and Psychiatry, 51, 173179.CrossRefGoogle ScholarPubMed
Björkqvist, K. (2001). Social defeat as a stressor in humans. Physiology & Behavior, 73, 435442.CrossRefGoogle ScholarPubMed
Boivin, M., Vitaro, F., & Poulin, F. (2005). Peer relationships and the development of aggressive behavior in early childhood. In Tremblay, R. E., Hartup, W. W., & Archer, J. (Eds.), Developmental origins of aggression (pp. 376397). New York: Guilford Press.Google Scholar
Boutwell, B. B., & Beaver, K. M. (2008). A biosocial explanation of delinquency abstention. Criminal Behavior and Mental Health, 18, 5974.Google Scholar
Brendgen, M. (2012). Genetics and peer relations: A review. Journal of Research on Adolescence, 22, 419437.CrossRefGoogle Scholar
Brendgen, M., Boivin, M., Vitaro, F., Girard, A., Dionne, G., & Pérusse, D. (2008). Gene–environment interaction between peer victimization and child aggression. Development and Psychopathology, 20, 455471.Google Scholar
Brenhouse, H. C., & Andersen, S. L. (2011). Developmental trajectories during adolescence in males and females: A cross-species understanding of underlying brain changes. Neuroscience & Biobehavioral Reviews, 35, 16871703.Google Scholar
Card, N. A., & Hodges, E. V. E. (2008). Peer victimization among schoolchildren: Correlations, causes, consequences, and considerations in assessment and intervention. School Psychology Quarterly, 23, 451461.CrossRefGoogle Scholar
Couppis, M. H., & Kennedy, C. H. (2008). The rewarding effect of aggression is reduced by nucleus accumbens dopamine receptor antagonism in mice. Psychopharmacology, 197, 449456.Google Scholar
Creemers, H. E., Harakeh, Z., Dick, D. M., Meyers, J., Vollebergh, W. A. M., Ormel, H., et al. (2011). DRD2 and DRD4 in relation to regular alcohol and cannabis use among adolescents: Does parenting modify the impact of genetic vulnerability? The TRAILS study. Drug and Alcohol Dependence, 115, 3542.CrossRefGoogle ScholarPubMed
Criss, M. M., Pettit, G. S., Bates, J. E., Dodge, K. A., & Lapp, A. L. (2002). Family adversity, positive peer relationships, and children's externalizing behavior: A longitudinal perspective on risk and resilience. Child Development, 73, 12201237.CrossRefGoogle ScholarPubMed
De Winter, A. F., Oldehinkel, A. J., Veenstra, R., Brunnekreef, A., Verhulst, F. C., & Ormel, J. (2005). Evaluation of nonresponse bias in mental health determinants and outcomes in a large sample of preadolescents. European Journal of Epidemiology, 20, 173181.CrossRefGoogle Scholar
DeYoung, C. G., Peterson, J. B., Séguin, J. R., Mejia, J. M., Pihl, R. O., Beitchman, J. H., et al. (2006). The dopamine D4 receptor gene and moderation of the association between externalizing behavior and IQ. Archives of Genetic Psychiatry, 63, 14101416.Google Scholar
Dijkstra, J. K., Lindenberg, S., Veenstra, R., Steglich, C. E. G., Isaacs, J., Card, N. A., et al. (2010). Influence and selection processes in weapon carrying during adolescence: The role of status, aggression, and vulnerability. Criminology, 48, 187220.Google Scholar
Dishion, T. J., & Tipsord, J. M. (2011). Peer contagion in child and adolescent social and emotional development. Annual Reviews of Psychology, 62, 189214.Google Scholar
Dishion, T. J., Véronneau, M.-H., & Myers, M. W. (2010). Cascading peer dynamics underlying the progression from problem behavior to violence in early adolescence. Development and Psychopathology, 22, 603619.CrossRefGoogle Scholar
Dmitrieva, J., Cheng, C., Greenberger, E., Oguneitan, E., & Ding, Y.-C. (2011). Gender-specific expression of the DRD4 gene on adolescent delinquency, anger, and thrill-seeking. Social Cognitive and Affective Neuroscience, 6, 8289.CrossRefGoogle ScholarPubMed
Ellis, B. J., Boyce, T., Belsky, J., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2011). Differential susceptibility to the environment: An evolutionary–neurodevelopmental theory. Development and Psychopathology, 23, 728.CrossRefGoogle Scholar
Fan, J., Fossella, J., Sommer, T., Wu, Y., & Posner, M. I. (2003). Mapping the genetic variation of executive attention onto brain activity. Proceedings of the National Academy of Sciences, 100, 74067411.Google Scholar
Faraone, S. V., Doyle, A. E., Mick, E., & Biederman, J. (2001). Meta-analysis of the association between the 7-repeat allele of the dopamine D4 receptor gene and attention deficit hyperactivity disorder. American Journal of Psychiatry, 158, 10521057.Google Scholar
Fox, C. L., & Boulton, M. J. (2005). The social skills problems of victims of bullying: Self, peer, and teacher perceptions. British Journal of Educational Psychology, 75, 313328.Google Scholar
Ganzeboom, B. G., & Treiman, D. J. (1996). Internationally comparable measures of occupational status for the 1988 International Standard Classification of Occupations. Social Science Research, 25, 201239.Google Scholar
Gardner, T. W., Dishion, T. J., & Connell, A. M. (2008). Adolescent self-regulation as resilience: Resistance to antisocial behavior within the deviant peer context. Journal of Abnormal Child Psychology, 36, 273284.CrossRefGoogle ScholarPubMed
Guo, G., Ou, X.-M., Roettger, M., & Shih, J. C. (2008). The VNTR 2 repeat in MAOA and delinquent behavior in adolescence and young adulthood: Associations and MAOA promoter activity. European Journal of Human Genetics, 16, 626634.Google Scholar
Hanish, L. D., & Guerra, N. G. (2002). A longitudinal analysis of patterns of adjustment following peer victimization. Development and Psychopathology, 14, 6989.Google Scholar
Hay, C., & Forrest, W. (2009). The implications of family poverty for a pattern of persistent offending. In Savage, J. (Ed.), The development of persistent criminality (pp. 5470). Oxford: Oxford University Press.Google Scholar
Hodges, E. V. E., Boivin, M., Vitaro, F., & Bukowski, W. M. (1999). The power of friendship: Protection against an escalating cycle of peer victimization. Developmental Psychology, 35, 94101.Google Scholar
Huisman, M., Oldehinkel, A. J., de Winter, A., Minderaa, R. B., de Bildt, A., Huizink, A. C., et al. (2008). Cohort profile: The Dutch Tracking Adolescents' Individual Lives Survey; TRAILS. International Journal of Epidemiology, 37, 12271235.Google Scholar
Junger-Tas, J., Ribeaud, D., & Cruyff, M. J. L. E. (2004). Juvenile delinquency and gender. European Journal of Criminology, 1, 333375.Google Scholar
Kendler, K. S., & Prescott, C. A. (2006). Genes, environment, and psychopathology: Understanding the causes of psychiatric and substance use disorders. New York: Guilford Press.Google Scholar
Khatri, P., Kupersmidt, J. B., & Patterson, C. (2000). Aggression and peer victimization as predictors of self-reported behavioral and emotional adjustment. Aggressive Behavior, 26, 345358.Google Scholar
Kim-Cohen, J., Caspi, A., Taylor, A., Williams, B., Newcombe, R., Craig, I. W., et al. (2006). MAOA, maltreatment, and gene–environment interaction predicting children's mental health: New evidence and a meta-analysis. Molecular Psychiatry, 11, 903913.Google Scholar
Laird, R. D., Jordan, K. Y., Dodge, K. A., Pettit, G. S., & Bates, J. E. (2001). Peer rejection in childhood, involvement with antisocial peers in early adolescence, and the development of externalizing behavior problems. Development and Psychopathology, 13, 337354.CrossRefGoogle ScholarPubMed
Latendresse, S. J., Bates, J. E., Goodnight, J. A., Lansford, J. E., Budde, J. P., Goate, A., et al. (2011). Differential susceptibility to adolescent externalizing trajectories: Examining the interplay between CHRM2 and peer group antisocial behavior. Child Development, 82, 1979–1814.Google Scholar
Lau, J. Y. F., Guyer, A. E., Tone, E. B., Jenness, J., Parrish, J. M., Pine, D. S., et al. (2012). Neural responses to peer rejection in anxious adolescents: Contributions from the amygdala–hippocampal complex. International Journal of Behavioral Development, 36, 3642.Google Scholar
Lee, S. S. (2011). Deviant peer affiliation and antisocial behavior: Interaction with monoamine oxidase A (MAOA) genotype. Journal of Abnormal Child Psychology, 39, 321332.CrossRefGoogle ScholarPubMed
López León, S., Croes, E. A., Sayed-Tabatabaei, F. A., Claes, S., Broeckhoven, C. V., & van Duijn, C. M. (2005). The dopamine D4 receptor gene 48-base-pair-repeat polymorphism and mood disorders: A meta-analysis. Biological Psychiatry, 57, 9991003.Google Scholar
Masten, C. L., Eisenberger, N. I., Borofksy, L. A., Pfeifer, J. H., McNealy, K., Mazziotta, J. C., et al. (2009). Neural correlates of social exclusion during adolescence: Understanding the distress of peer rejection. Social Cognitive and Affective Neuroscience, 4, 143157.Google Scholar
Miller, S. A., Dykes, D. D., & Polesky, H. F. (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research, 16, 1215.Google Scholar
Moffitt, T. E. (1993). Adolescence-limited and life-course-persistent antisocial behavior: A developmental taxonomy. Psychological Review, 100, 674701.CrossRefGoogle ScholarPubMed
Moor, B. G., Güroğlu, B., Op de Macks, Z., Rombouts, S. A. R. B., Van der Molen, M. W., & Crone, E. A. (2012). Social exclusion and punishment of excluders: Neural correlates and developmental trajectories. NeuroImage, 59, 708717.Google Scholar
Munafó, M. R., Yalcin, B., Willis-Owen, S. A., & Flint, J. (2008). Association of the dopamine D4 receptor (DRD4) gene and approach-related personality traits: Meta-analysis and new data. Biological Psychiatry, 63, 197206.Google Scholar
Oak, J. N., Oldenhof, J., & Van Tol, H. H. M. (2004). The dopamine D4 receptor: One decade of research. European Journal of Pharmacology, 405, 303327.Google Scholar
Olsson, C. A., Moyzis, R. K., Williamson, E., Ellis, J. E., Parkinson-Bates, M., Patton, G. C., et al. (in press). Gene–environment interaction in problematic substance use: Interaction between DRD4 and insecure attachments. Addiction Biology. doi:10.1111/j.1369-1600.2011.00413.xGoogle Scholar
Ormel, J. (2002). Social production function (SPF) theory as an heuristic for understanding developmental trajectories and outcomes. In Pulkkinen, L. & Caspi, A. (Eds.), Paths to successful development: Personality in the life course (pp. 353379). New York: Cambridge University Press.Google Scholar
Ormel, J., Lindenberg, S., Steverink, N., & Vonkorff, M. (1997). Quality of life and social production functions: A framework for understanding health effects. Social Science and Medicine, 45, 10511063.Google Scholar
Ostrov, J. M. (2010). Prospective associations between peer victimization and aggression. Child Development, 81, 16701677.Google Scholar
Park, A., Sher, K. J., Todorov, A. A., & Heath, A. C. (2011). Interaction between the DRD4 VNTR polymorphism and proximal and distal environments in alcohol dependence during emerging and young adulthood. Journal of Abnormal Child Psychology, 120, 585595.Google Scholar
Parker, J. G., Rubin, K. H., Erath, S. A., Wojslawowicz, J. C., & Buskirk, A. A. (2006). Peer relationships, child development, and adjustment: A developmental psychopathology perspective. In Cicchetti, D. & Cohen, D. J. (Eds.), Developmental psychopathology: Vol. 1. Theory and methods (2nd ed., pp. 96161). Hoboken, NJ: Wiley.Google Scholar
Propper, C., Willoughby, M., Halpern, C. T., Carbone, M. A., & Cox, M. (2007). Parenting quality, DRD4, and the prediction of externalizing and internalizing behaviors in early childhood. Developmental Psychobiology, 49, 619632.Google Scholar
Ray, L. A., Bryan, A., MacKillop, J., McGeary, J., Hesterberg, K., & Hutchison, K. E. (2009). The dopamine D4 receptor (DRD4) gene exon III polymorphism, problematic alcohol use and novelty seeking: Direct and mediated genetic effects. Addiction Biology, 14, 238244.Google Scholar
Reiss, D., Neiderhiser, J. M., Hetherington, E. M., & Plomin, R. (2000). The relationship code: Deciphering genetic and social influences on adolescent development. Cambridge, MA: Harvard University Press.Google Scholar
Rodgers, J. L., Buster, M., & Rowe, D. C. (2001). Genetic and environmental influences on delinquency: DF analysis of NLSY kinship data. Journal of Quantitative Criminology, 17, 145168.Google Scholar
Rusby, J. C., Forrester, K. K., Biglan, A., & Metzler, C. W. (2005). Relationships between peer harassment and adolescent problem behaviors. Journal of Early Adolescence, 25, 453477.Google Scholar
Schinka, J. A., Letsch, E. A., & Crawford, F. C. (2002). DRD4 and novelty seeking: Results of meta-analyses. American Journal of Medical Genetics, 114, 643648.CrossRefGoogle ScholarPubMed
Sentse, M., Lindenberg, S., Omvlee, A., Ormel, J., & Veenstra, R. (2010). Rejection and acceptance across contexts: Parents and peers as risks and buffers for early adolescent psychopathology. The TRAILS Study. Journal of Abnormal Child Psychology, 38, 119130.Google Scholar
Settle, J. E., Dawes, C. T., Christakis, N. A., & Fowler, J. H. (2010). Friendships moderates an association between a dopamine gene variant and political ideology. Journal of Politics, 72, 11891198.Google Scholar
Stein, J. D., Newman, T. K., Savitz, J., & Ramesar, R. (2006). Warriors versus worriers: The role of COMT gene variants. CNS Spectrums, 11, 745748.Google Scholar
Stevens, S. E., Kumsta, R., Kreppner, J. M., Brookes, K. J., Rutter, M., & Sonuga-Barke, E. J. S. (2009). Dopamine transporter gene polymorphism moderates the effects of severe deprivation on ADHD symptoms: Developmental continuities in gene–environment interplay. American Journal of Medical Genetics, 150B, 753761.Google Scholar
Sugden, K., Arsenault, L., Harrington, H., Moffitt, T. E., Williams, B., & Caspi, A. (2010). Serotonin transporter gene moderates the development of emotional problems among children following bullying victimization. Journal of the American Academy of Child & Adolescent Psychiatry, 49, 830840.Google Scholar
Swanson, J., Oosterlaan, J., Murias, M., Schuck, S., Flodman, P., Spence, M. A., et al. (2000). Attention deficit/hyperactivity disorder children with a 7-repeat allele of the dopamine receptor D4 gene have extreme behavior but normal performance on critical neuropsychological tests of attention. Proceedings of the National Academy of Sciences, 97, 47544759.Google Scholar
Thornberry, T. P., & Krohn, M. D. (2000). The self-report method for measuring delinquency and crime: Measurement and analysis of crime and justice. In Duffee, D. (Ed.), Measurement and analysis of crime and justice: Criminal justice 2000 (Vol. 4, pp. 3383). Washington, DC: US Department of Justice, Office of Justice Programs.Google Scholar
von Hippel, P. T. (2007). Regression with missing Ys: An improved strategy for multiple imputed data. Sociological Methods, 37, 83117.CrossRefGoogle Scholar
Wahlstrom, D., White, T., & Luciana, M. (2010). Neurobehavioral evidence for changes in dopamine system activity during adolescence. Neuroscience & Biobehavioral Reviews, 34, 631648.Google Scholar