Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T07:57:49.313Z Has data issue: false hasContentIssue false

HPA-axis multilocus genetic variation moderates associations between environmental stress and depressive symptoms among adolescents

Published online by Cambridge University Press:  05 November 2018

Lisa R. Starr*
Affiliation:
Department of Clinical and Social Sciences in Psychology, University of Rochester, Rochester, NY, USA
Meghan Huang
Affiliation:
Department of Clinical and Social Sciences in Psychology, University of Rochester, Rochester, NY, USA
*
Author for correspondence: Lisa Starr, Department of Clinical and Social Sciences in Psychology, 491 Meliora Hall, Box 270266, Rochester, NY 14627; E-mail: lisa.starr@rochester.edu.

Abstract

Research suggests that genetic variants linked to hypothalamic-pituitary-adrenal (HPA)-axis functioning moderate the association between environmental stressors and depression, but examining gene–environment interactions with single polymorphisms limits power. The current study used a multilocus genetic profile score (MGPS) approach to measuring HPA-axis–related genetic variation and examined interactions with acute stress, chronic stress, and childhood adversity (assessed using contextual threat interview methods) with depressive symptoms as outcomes in an adolescent sample (ages 14–17, N = 241; White subsample n = 192). Additive MGPSs were calculated using 10 single nucleotide polymorphisms within HPA-axis genes (CRHR1, NR3C2, NR3C1, FKBP5). Higher MGPS directly correlated with adolescent depressive symptoms. Moreover, MGPS predicted stronger associations between acute and chronic stress and adolescent depressive symptoms and also moderated the effect of interpersonal, but not noninterpersonal, childhood adversity. Gene–environment interactions individually accounted for 5%–8% of depressive symptom variation. All results were retained following multiple test correction and stratification by race. Results suggest that using MGPSs provides substantial power to examine gene–environmental interactions linked to affective outcomes among adolescents.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aliev, F., Latendresse, S. J., Bacanu, S.-A., Neale, M. C., & Dick, D. M. (2014). Testing for measured gene-environment interaction: Problems with the use of cross-product terms and a regression model reparameterization solution. Behavior Genetics, 44, 165181.Google Scholar
Appel, K., Schwahn, C., Mahler, J., Schulz, A., Spitzer, C., Fenske, K., … Grabe, H. J. (2011). Moderation of adult depression by a polymorphism in the FKBP5 gene and childhood physical abuse in the general population. Neuropsychopharmacology, 36, 19821991. doi: http://www.nature.com/npp/journal/v36/n10/suppinfo/npp201181s1.htmlGoogle Scholar
Avenevoli, S., Swendsen, J., He, J. P., Burstein, M., & Merikangas, K. R. (2015). Major depression in the national comorbidity survey-adolescent supplement: Prevalence, correlates, and treatment. Journal of the American Academy of Child and Adolescent Psychiatry, 54, 3744.e32. doi:10.1016/j.jaac.2014.10.010Google Scholar
Belsky, J., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2007). For better and for worse. Current Directions in Psychological Science, 16, 300304. doi: 10.1111/j.1467-8721.2007.00525.xGoogle Scholar
Belsky, J., & Pluess, M. (2009). Beyond diathesis stress: Differential susceptibility to environmental influences. Psychological Bulletin, 135, 885.Google Scholar
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 289300.Google Scholar
Bogdan, R., Hyde, L. W., & Hariri, A. R. (2013). A neurogenetics approach to understanding individual differences in brain, behavior, and risk for psychopathology. Molecular Psychiatry, 18, 288299. doi:10.1038/mp.2012.35Google Scholar
Bogdan, R., Salmeron, B. J., Carey, C. E., Agrawal, A., Calhoun, V. D., Garavan, H., … Goldman, D. (2017). Imaging genetics and genomics in psychiatry: A critical review of progress and potential. Biological Psychiatry, 82, 165175. doi: https://doi.org/10.1016/j.biopsych.2016.12.030Google Scholar
Boyle, E. A., Li, Y. I., & Pritchard, J. K. (2017). An expanded view of complex traits: From polygenic to omnigenic. Cell, 169, 11771186. doi: https://doi.org/10.1016/j.cell.2017.05.038Google Scholar
Bradley, R. G., Binder, E. B., Epstein, M. P., Tang, Y., Nair, H. P., Liu, W., … Newport, D. J. (2008). Influence of child abuse on adult depression: Moderation by the corticotropin-releasing hormone receptor gene. Archives of General Psychiatry, 65, 190.Google Scholar
Brown, G. W., & Harris, T. (1978). Social Origins of Depression. New York: Free Press.Google Scholar
Caspi, A., Hariri, A. R., Holmes, A., Uher, R., & Moffitt, T. E. (2010). Genetic sensitivity to the environment: The case of the serotonin transporter gene and is implications for studying complex diseases and traits. American Journal of Psychiatry, 167, 509527.Google Scholar
Chida, Y., & Steptoe, A. (2009). Cortisol awakening response and psychosocial factors: A systematic review and meta-analysis. Biological Psychology, 80, 265278. doi: 10.1016/j.biopsycho.2008.10.004Google Scholar
Cicchetti, D., & Rogosch, F. A. (2012). Gene by environment interaction and resilience: Effects of child maltreatment and serotonin, corticotropin releasing hormone, dopamine, and oxytocin genes. Dev Psychopathol, 24, 411427. doi:10.1017/S0954579412000077Google Scholar
Colodro-Conde, L., Couvy-Duchesne, B., Zhu, G., Coventry, W. L., Byrne, E. M., Gordon, S., … Martin, N. G. (2017). A direct test of the diathesis–stress model for depression. Molecular Psychiatry, 23, 15901596. doi:10.1038/mp.2017.130 https://www.nature.com/articles/mp2017130#supplementary-informationGoogle Scholar
Condren, R. M., O'Neill, A., Ryan, M. C. M., Barrett, P., & Thakore, J. H. (2002). HPA axis response to a psychological stressor in generalised social phobia. Psychoneuroendocrinology, 27(6), 693703. doi: http://dx.doi.org/10.1016/S0306-4530(01)00070-1Google Scholar
Converge Consortium (2015). Sparse whole genome sequencing identifies two loci for major depressive disorder. Nature, 523, 588591. doi:10.1038/nature14659Google Scholar
Conway, C. C., Hammen, C., Brennan, P. A., Lind, P. A., & Najman, J. M. (2010). Interaction of chronic stress with serotonin transporter and catechol-O-methyltransferase polymorphisms in predicting youth depression. Depression and Anxiety, 27, 737745. doi:10.1002/da.20715Google Scholar
Cross-Disorder Group of the Psychiatric Genomics Consortium. (2013). Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nature Genetics, 45, 984994. doi:10.1038/ng.2711Google Scholar
Culverhouse, R. C., Saccone, N. L., Horton, A. C., Ma, Y., Anstey, K. J., Banaschewski, T., … Bierut, L. J. (2017). Collaborative meta-analysis finds no evidence of a strong interaction between stress and 5-HTTLPR genotype contributing to the development of depression. Molecular Psychiatry, 23, 133142. doi:10.1038/mp.2017.44Google Scholar
Davis, C., & Loxton, N. J. (2013). Addictive behaviors and addiction-prone personality traits: Associations with a dopamine multilocus genetic profile. Addictive Behaviors, 38, 23062312. doi: https://doi.org/10.1016/j.addbeh.2013.02.012Google Scholar
Davis, C., Loxton, N. J., Levitan, R. D., Kaplan, A. S., Carter, J. C., & Kennedy, J. L. (2013). ‘Food addiction’ and its association with a dopaminergic multilocus genetic profile. Physiology and Behavior, 118, 6369. doi: https://doi.org/10.1016/j.physbeh.2013.05.014Google Scholar
de Kloet, E. R., Joëls, M., & Holsboer, F. (2005). Stress and the brain: From adaptation to disease. Nature Reviews Neuroscience, 6, 463475. doi: 10.1038/nrn1683Google Scholar
de Vries, Y., Roest, A., Franzen, M., Munafò, M., & Bastiaansen, J. (2016). Citation bias and selective focus on positive findings in the literature on the serotonin transporter gene (5-HTTLPR), life stress and depression. Psychological Medicine, 46, 19.Google Scholar
Di Iorio, C. R., Carey, C. E., Michalski, L. J., Corral-Frias, N. S., Conley, E. D., Hariri, A. R., & Bogdan, R. (2017). Hypothalamic-pituitary-adrenal axis genetic variation and early stress moderates amygdala function. Psychoneuroendocrinology, 80, 170178. doi:10.1016/j.psyneuen.2017.03.016Google Scholar
Dick, D. M., Agrawal, A., Keller, M. C., Adkins, A., Aliev, F., Monroe, S., … Sher, K. J. (2015). Candidate gene–environment interaction research. Perspectives on Psychological Science, 10, 3759. doi:10.1177/1745691614556682Google Scholar
Dickerson, S. S., & Kemeny, M. E. (2004). Acute stressors and cortisol responses: A theoretical integration and synthesis of laboratory research. Psychological Bulletin, 130, 355391. doi:10.1037/0033-2909.130.3.355Google Scholar
Duncan, L. E., & Keller, M. C. (2011). A critical review of the first 10 years of candidate gene-by-environment interaction research in psychiatry. The American Journal of Psychiatry, 168, 10411049. doi:10.1176/appi.ajp.2011.11020191Google Scholar
Eaves, L. J., Silberg, J. L., Meyer, J. M., Maes, H. H., Simonoff, E., Pickles, A., … Truett, K. R. (1997). Genetics and developmental psychopathology: 2. The main effects of genes and environment on behavioral problems in the Virginia Twin Study of Adolescent Behavioral Development. Journal of Child Psychology and Psychiatry, 38, 965980.Google Scholar
Feurer, C., McGeary, J. E., Knopik, V. S., Brick, L. A., Palmer, R. H., & Gibb, B. E. (2017). HPA axis multilocus genetic profile score moderates the impact of interpersonal stress on prospective increases in depressive symptoms for offspring of depressed mothers. Journal of Abnormal Psychology, 126, 10171028.Google Scholar
Gunnar, M. R., & Vazquez, D. (2015). Stress neurobiology and developmental psychopathology. In Cichetti, D. and Cohen, D. J. (Eds), Developmental Psychopathology (pp. 533577). Hoboken, NJ: John Wiley & Sons, Inc.Google Scholar
Gunnar, M. R., Wewerka, S., Frenn, K., Long, J. D., & Griggs, C. (2009). Developmental changes in hypothalamus–pituitary–adrenal activity over the transition to adolescence: Normative changes and associations with puberty. Development and Psychopathology, 21, 6985.Google Scholar
Hames, J. L., Hagan, C. R., & Joiner, T. E. (2013). Interpersonal processes in depression. Annual Review of Clinical Psycholology, 9, 355377. doi:10.1146/annurev-clinpsy-050212-185553Google Scholar
Hammen, C. (1991). Generation of stress in the course of unipolar depression. Journal of Abnormal Psychology, 100, 555.Google Scholar
Hammen, C. (2000). Interpersonal factors in an emerging developmental model of depression. In Johnson, S. L., Hayes, A. M., Field, T. M., Schneiderman, N., & McCabe, P. (Eds.), Stress, Coping and Depression (pp. 7188). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Hammen, C. (2005). Stress and depression. Annual Review of Clinical Psychology, 1, 293319. doi:10.1146/annurev.clinpsy.1.102803.143938Google Scholar
Hammen, C., Henry, R., & Daley, S. E. (2000). Depression and sensitization to stressors among young women as a function of childhood adversity. Journal of Consulting and Clinical Psychology, 68, 782787.Google Scholar
Harkness, K. L., Bagby, R. M., Stewart, J. G., Larocque, C. L., Mazurka, R., Strauss, J. S., … Kennedy, J. L. (2015). Childhood emotional and sexual maltreatment moderate the relation of the serotonin transporter gene to stress generation. Journal of Abnormal Psychology, 124, 275.Google Scholar
Harkness, K. L., & Monroe, S. M. (2016). The assessment and measurement of adult life stress: Basic premises, operational principles, and design requirements. Journal of Abnormal Psychology, 125, 727745. doi:10.1037/abn0000178Google Scholar
Hayes, A. F. (2013). Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach. New York: Guilford.Google Scholar
Heim, C., & Nemeroff, C. B. (2001). The role of childhood trauma in the neurobiology of mood and anxiety disorders: Preclinical and clinical studies. Biological Psychiatry, 49, 10231039. doi: http://doi.org/10.1016/S0006-3223(01)01157-XGoogle Scholar
Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., … Wang, P. (2010). Research Domain Criteria (RDoC): Toward a new classification framework for research on mental disorders. American Journal of Psychiatry, 167, 748751.Google Scholar
Karg, K., Burmeister, M., Shedden, K., & Sen, S. (2011). The serotonin transporter promoter variant (5-HTTLPR), stress, and depression meta-analysis revisited: Evidence of genetic moderation. Archives of General Psychiatry, 68, 444454. doi:10.1001/archgenpsychiatry.2010.189Google Scholar
Kaufman, J., Birmaher, B., Brent, D., Rao, U. M. A., Flynn, C., Moreci, P., … Ryan, N. (1997). Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime Version (K-SADS-PL): Initial reliability and validity data. Journal of the American Academy of Child and Adolescent Psychiatry, 36, 980988. doi: http://dx.doi.org/10.1097/00004583-199707000-00021Google Scholar
Kendler, K. S., Thornton, L. M., & Gardner, C. O. (2001). Genetic risk, number of previous depressive episodes, and stressful life events in predicting onset of major depression. American Journal of Psychiatry, 158, 582586. doi:10.1176/appi.ajp.158.4.582Google Scholar
Liu, Z., Liu, W., Yao, L., Yang, C., Xiao, L., Wan, Q., … Xiao, Z. (2013). Negative life events and corticotropin-releasing-hormone receptor1 gene in recurrent major depressive disorder. Scientific Reports, 3, 1548. doi:10.1038/srep01548Google Scholar
Lubke, G. H., Hottenga, J. J., Walters, R., Laurin, C., de Geus, E. J. C., Willemsen, G., … Boomsma, D. I. (2012). Estimating the genetic variance of major depressive disorder (MDD) due to all SNPs. Biological Psychiatry, 72, 707709. doi:10.1016/j.biopsych.2012.03.011Google Scholar
Lupien, S. J., Ouellet-Morin, I., Hupbach, A., Tu, M. T., Buss, C., Walker, D., … McEwen, B. S. (2006). Beyond the stress concept: Allostatic load--a developmental biological and cognitive perspective. In Cicchetti, D. & Cohen, D. J. (Eds.), Developmental Psychopathology: Developmental Neuroscience (Vol. 2). Hoboken, NJ: John Wiley & Sons Inc.Google Scholar
Major Depressive Disorder Working Group of the Psychiatric GWAS Consortium. (2013). A mega-analysis of genome-wide association studies for major depressive disorder. Molecular Psychiatry, 18, 497511. doi: http://www.nature.com/mp/journal/v18/n4/suppinfo/mp201221s1.htmlGoogle Scholar
McBurnett, K., Lahey, B. B., Capasso, L., & Loeber, R. (1996). Aggressive symptoms and salivary cortisol in clinic-referred boys with conduct disorder. Annals of the New York Academy of Sciences, 794, 169178. doi:10.1111/j.1749-6632.1996.tb32519.xGoogle Scholar
McBurnett, K., Lahey, B. B., Rathouz, P. J., & Loeber, R. (2000). Low salivary cortisol and persistent aggression in boys referred for disruptive behavior. Archives of General Psychiatry, 57, 3843. doi:10.1001/archpsyc.57.1.38Google Scholar
McEwen, B. S. (1998). Stress, adaptation, and disease: Allostasis and allostatic load. Annals of the New York Academy of Sciences, 840, 3344.Google Scholar
Miller, G. E., Chen, E., & Zhou, E. S. (2007). If it goes up, must it come down? Chronic stress and the hypothalamic-pituitary-adrenocortical axis in humans. Psychological Bulletin, 133, 2545.Google Scholar
Monroe, S. M., & Reid, M. W. (2008). Gene-environment interactions in depression research: Genetic polymorphisms and life-stress polyprocedures. Psychological Science, 19, 947956. doi:10.1111/j.1467-9280.2008.02181.xGoogle Scholar
Moss, H. B., Vanyukov, M. M., & Martin, C. S. (1995). Salivary cortisol responses and the risk for substance abuse in prepubertal boys. Biological Psychiatry, 38, 547555. doi:10.1016/0006-3223(94)00382-DGoogle Scholar
Mullins, N., Perroud, N., Uher, R., Butler, A. W., Cohen-Woods, S., Rivera, M., … Lewis, C. M. (2014). Genetic relationships between suicide attempts, suicidal ideation and major psychiatric disorders: A genome-wide association and polygenic scoring study. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 165, 428437. doi:10.1002/ajmg.b.32247Google Scholar
Munafò, M. R., Freimer, N. B., Ng, W., Ophoff, R., Veijola, J., Miettunen, J., … Flint, J. (2009). 5-HTTLPR genotype and anxiety-related personality traits: A meta-analysis and new data. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 150B, 271281. doi:10.1002/ajmg.b.30808Google Scholar
Musliner, K. L., Seifuddin, F., Judy, J. A., Pirooznia, M., Goes, F. S., & Zandi, P. P. (2015). Polygenic risk, stressful life events and depressive symptoms in older adults: A polygenic score analysis. Psychological Medicine, 45, 17091720. doi:10.1017/S0033291714002839Google Scholar
Nikolova, Y. S., Ferrell, R. E., Manuck, S. B., & Hariri, A. R. (2011). Multilocus genetic profile for dopamine signaling predicts ventral striatum reactivity. Neuropsychopharmacology, 36, 19401947. doi:10.1038/npp.2011.82Google Scholar
Okbay, A., Baselmans, B. M., De Neve, J.-E., Turley, P., Nivard, M. G., Fontana, M. A., … Derringer, J. (2016). Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses. Nature Genetics, 48, 624633.Google Scholar
Pagliaccio, D., Luby, J. L., Bogdan, R., Agrawal, A., Gaffrey, M. S., Belden, A. C., … Barch, D. M. (2014). Stress-system genes and life stress predict cortisol levels and amygdala and hippocampal volumes in children. Neuropsychopharmacology, 39, 12451253. doi:10.1038/npp.2013.327Google Scholar
Pagliaccio, D., Luby, J. L., Bogdan, R., Agrawal, A., Gaffrey, M. S., Belden, A. C., … Barch, D. M. (2015a). Amygdala functional connectivity, HPA axis genetic variation, and life stress in children and relations to anxiety and emotion regulation. Journal of Abnormal Psychology, 124, 817833. doi:10.1037/abn0000094Google Scholar
Pagliaccio, D., Luby, J. L., Bogdan, R., Agrawal, A., Gaffrey, M. S., Belden, A. C., … Barch, D. M. (2015b). HPA axis genetic variation, pubertal status, and sex interact to predict amygdala and hippocampus responses to negative emotional faces in school-age children. NeuroImage, 109, 111. doi: http://dx.doi.org/10.1016/j.neuroimage.2015.01.017Google Scholar
Pariante, C. M., & Lightman, S. L. (2008). The HPA axis in major depression: Classical theories and new developments. Trends in Neurosciences, 31, 464468.Google Scholar
Pearson-Fuhrhop, K. M., Dunn, E. C., Mortero, S., Devan, W. J., Falcone, G. J., Lee, P., … Cramer, S. C. (2014). Dopamine genetic risk score predicts depressive symptoms in healthy adults and adults with depression. PLoS ONE, 9, e93772. doi: 10.1371/journal.pone.0093772Google Scholar
Petersen, A. C., Crockett, L., Richards, M., & Boxer, A. (1988). A self-report measure of pubertal status: Reliability, validity, and initial norms. Journal of Youth and Adolescence, 17, 117133.Google Scholar
Peyrot, W. J., Milaneschi, Y., Abdellaoui, A., Sullivan, P. F., Hottenga, J. J., Boomsma, D. I., & Penninx, B. W. J. H. (2014). Effect of polygenic risk scores on depression in childhood trauma. British Journal of Psychiatry, 205, 113119. doi:10.1192/bjp.bp.113.143081Google Scholar
Polanczyk, G., Caspi, A., Williams, B., Price, T. S., Danese, A., Sugden, K., … Moffit, T. E. (2009). Protective effect of crhr1 gene variants on the development of adult depression following childhood maltreatment: Replication and extension. Archives of General Psychiatry, 66, 978985. doi:10.1001/archgenpsychiatry.2009.114Google Scholar
Popma, A., Doreleijers, T. A., Jansen, L. M., Van Goozen, S. H., Van Engeland, H., & Vermeiren, R. (2007). The diurnal cortisol cycle in delinquent male adolescents and normal controls. Neuropsychopharmacology, 32, 1622.Google Scholar
Rao, U. M. A., Daley, S. E., & Hammen, C. (2000). Relationship between depression and substance use disorders in adolescent women during the transition to adulthood. Journal of the American Academy of Child and Adolescent Psychiatry, 39, 215222. doi: http://dx.doi.org/10.1097/00004583-200002000-00022Google Scholar
Reuter, M., Markett, S., Melchers, M., & Montag, C. (2012). Interaction of the cholinergic system and the hypothalamic-pituitary-adrenal axis as a risk factor for depression: Evidence from a genetic association study. Neuroreport, 23, 717720. doi:10.1097/WNR.0b013e32835671baGoogle Scholar
Rice, F., Harold, G. T., & Thapar, A. (2002). Assessing the effects of age, sex and shared environment on the genetic aetiology of depression in childhood and adolescence. Journal of Child Psychology and Psychiatry, 43, 10391051. doi:10.1111/1469-7610.00231Google Scholar
Risch, N., Herrell, R., Lehner, T., Liang, K. Y., Eaves, L., Hoh, J., … Merikangas, K. R. (2009). Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: A meta-analysis. The Journal of the American Medical Association, 301, 24622471. doi:10.1001/jama.2009.878Google Scholar
Romeo, R. D. (2013). The teenage brain: The stress response and the adolescent brain. Current Directions in Psychological Science, 22, 140145. doi:10.1177/0963721413475445Google Scholar
Rosmond, R., & Bjorntorp, P. (2000). The hypothalamic-pituitary-adrenal axis activity as a predictor of cardiovascular disease, type 2 diabetes and stroke. Journal of Internal Medicine, 247, 188197.Google Scholar
Rudolph, K. D. (2002). Gender differences in emotional responses to interpersonal stress during adolescence. Journal of Adolescent Health Care, 30, 313.Google Scholar
Rudolph, K. D., Hammen, C., Burge, D., Lindberg, N., Herzberg, D., & Daley, S. E. (2000). Toward an interpersonal life-stress model of depression: the developmental context of stress generation. Developmental Psychopathology, 12, 215234.Google Scholar
Sheets, E. S., & Craighead, W. E. (2014). Comparing chronic interpersonal and noninterpersonal stress domains as predictors of depression recurrence in emerging adults. Behaviour Research and Therapy, 63, 3642.Google Scholar
Sheikh, H. I., Kryski, K. R., Smith, H. J., Hayden, E. P., & Singh, S. M. (2013). Corticotropin-releasing hormone system polymorphisms are associated with children's cortisol reactivity. Neuroscience, 229, 111. doi:10.1016/j.neuroscience.2012.10.056Google Scholar
Shih, J., Eberhart, N., Hammen, C., & Brennan, P. (2006). Differential exposure and reactivity to interpersonal stress predict sex differences in adolescent depression. Journal of Clinical Child & Adolescent Psychology, 35, 103115. doi:10.1207/s15374424jccp3501_9Google Scholar
Sinha, M., Larkin, E. K., Elston, R. C., & Redline, S. (2006). Self-reported race and genetic admixture. New England Journal of Medicine, 354, 421422. doi:10.1056/NEJMc052515Google Scholar
Starr, L. R., Dienes, K. A., Stroud, C. B., Shaw, Z. A., Li, Y. I., Mlawer, F., & Huang, M. (2017). Childhood adversity moderates the influence of proximal episodic stress on the cortisol awakening response and depressive symptoms in adolescents. Development and Psychopathology, 29, 18771893. doi:10.1017/S0954579417001468Google Scholar
Starr, L. R., Hammen, C., Brennan, P. A., & Najman, J. M. (2012). Serotonin transporter gene as a predictor of stress generation in depression. Journal of Abnormal Psychology, 121, 810818. doi:10.1037/a0027952Google Scholar
Starr, L. R., Hammen, C., Conway, C. C., Raposa, E., & Brennan, P. A. (2014). Sensitizing effect of early adversity on depressive reactions to later proximal stress: Moderation by polymorphisms in serotonin transporter and corticotropin releasing hormone receptor genes in a 20-year longitudinal study. Development and Psychopathology, 26, 12411254.Google Scholar
Steinberg, S. J., & Davila, J. (2008). Romantic functioning and depressive symptoms among early adolescent girls: The moderating role of parental emotional availability. Journal of Clinical Child and Adolescent Psychology, 37, 350362.Google Scholar
Stroud, C. B., Chen, F. R., Doane, L. D., & Granger, D. A. (2016). Individual differences in early adolescents' latent trait cortisol (LTC): Relation to recent acute and chronic stress. Psychoneuroendocrinology, 70, 3846. doi:10.1016/j.psyneuen.2016.04.015Google Scholar
Sullivan, P. F., Daly, M. J., & O'Donovan, M. (2012). Genetic architectures of psychiatric disorders: The emerging picture and its implications. Nature Reviews. Genetics, 13, 537551. doi:10.1038/nrg3240Google Scholar
Szczepankiewicz, A., Leszczynska-Rodziewicz, A., Pawlak, J., Narozna, B., Rajewska-Rager, A., Wilkosc, M., … Twarowska-Hauser, J. (2014). FKBP5 polymorphism is associated with major depression but not with bipolar disorder. Journal of Affective Disorders, 164, 3337. doi:10.1016/j.jad.2014.04.002Google Scholar
Tully, E. C., Iacono, W. G., & McGue, M. (2010). Changes in genetic and environmental influences on the development of nicotine dependence and major depressive disorder from middle adolescence to early adulthood. Development and Psychopathology, 22, 831848. doi: 10.1017/S0954579410000490Google Scholar
Uher, R., Caspi, A., Houts, R., Sugden, K., Williams, B., Poulton, R., & Moffitt, T. E. (2011). Serotonin transporter gene moderates childhood maltreatment's effects on persistent but not single-episode depression: Replications and implications for resolving inconsistent results. Journal of Affective Disorders, 135, 5665. doi: http://dx.doi.org/10.1016/j.jad.2011.03.010Google Scholar
Van Den Oord, E. J., & Sullivan, P. F. (2003). False discoveries and models for gene discovery. Trends in Genetics, 19, 537542.Google Scholar
Vinkers, C. H., Joëls, M., Milaneschi, Y., Gerritsen, L., Kahn, R. S., Penninx, B. W. J. H., & Boks, M. P. M. (2015). Mineralocorticoid receptor haplotypes sex-dependently moderate depression susceptibility following childhood maltreatment. Psychoneuroendocrinology, 54, 90102. doi: https://doi.org/10.1016/j.psyneuen.2015.01.018Google Scholar
Vrshek-Schallhorn, S., Mineka, S., Zinbarg, R. E., Craske, M. G., Griffith, J. W., Sutton, J., … Adam, E. K. (2014). Refining the candidate environment: Interpersonal stress, the serotonin transporter polymorphism, and gene-environment interactions in major depression. Clinical Psychological Science, 2, 235248. doi: 10.1177/2167702613499329Google Scholar
Vrshek-Schallhorn, S., Sapuram, V., & Avery, B. (2017). Letter to the Editor: Bias in the measurement of bias. Letter regarding ‘Citation bias and selective focus on positive findings in the literature on the serotonin transporter gene (5-HTTLPR), life stress and depression’. Psychological Medicine, 47, 187.Google Scholar
Vrshek-Schallhorn, S., Stroud, C. B., Mineka, S., Zinbarg, R. E., Adam, E. K., Redei, E. E., … Craske, M. G. (2015). Additive genetic risk from five serotonin system polymorphisms interacts with interpersonal stress to predict depression. Journal of Abnormal Psychology, 124, 776.Google Scholar
Wray, N. R., & Sullivan, P. F. (2018). Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nature Genetics, 50, 668681. doi:10.1038/s41588-018-0090-3Google Scholar
Yehuda, R., Southwick, S. M., Krystal, J. H., Bremner, D., Charney, D. S., & Mason, J. W. (1993). Enhanced suppression of cortisol following dexamethasone administration in posttraumatic stress disorder. American Journal of Psychiatry, 150, 8386. doi:10.1176/ajp.150.1.83Google Scholar
Yehuda, R., Southwick, S. M., Nussbuam, G., Wahby, V., Giller, E. L. Jr., & Mason, J. W. (1990). Low urinary cortisol excretion in patients with posttraumatic stress disorder. The Journal of Nervous and Mental Disease, 178, 366369.Google Scholar
Zalewski, M., Lengua, L. J., Kiff, C. J., & Fisher, P. A. (2012). Understanding the relation of low income to HPA-axis functioning in preschool children: Cumulative family risk and parenting as pathways to disruptions in cortisol. Child Psychiatry and Human Development, 43, 924942. doi:10.1007/s10578-012-0304-3Google Scholar
Zimmermann, P., Brückl, T., Nocon, A., Pfister, H., Binder, E. B., Uhr, M., … Ising, M. (2011). Interaction of FKBP5 gene variants and adverse life events in predicting depression onset: Results from a 10-year prospective community study. American Journal of Psychiatry, 168, 11071116. doi:10.1176/appi.ajp.2011.10111577Google Scholar