Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T07:47:27.121Z Has data issue: false hasContentIssue false

Neural predictors of alcohol use and psychopathology symptoms in adolescents

Published online by Cambridge University Press:  14 October 2016

TY Brumback
Affiliation:
University of California San Diego VA San Diego Healthcare System
Matthew Worley
Affiliation:
University of California San Diego VA San Diego Healthcare System
Tam T. Nguyen-Louie
Affiliation:
San Diego State University/University of California San Diego
Lindsay M. Squeglia
Affiliation:
Medical University of South Carolina
Joanna Jacobus
Affiliation:
University of California San Diego VA San Diego Healthcare System
Susan F. Tapert*
Affiliation:
University of California San Diego
*
Address correspondence and reprint requests to: Susan F. Tapert, Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093; E-mail: stapert@ucsd.edu.

Abstract

Adolescence is a period marked by increases in risk taking, sensation seeking, and emotion dysregulation. Neurobiological models of adolescent development propose that lagging development in brain regions associated with affect and behavior control compared to regions associated with reward and emotion processing may underlie these behavioral manifestations. Cross-sectional studies have identified several functional brain networks that may contribute to risk for substance use and psychopathology in adolescents. Determining brain structure measures that prospectively predict substance use and psychopathology could refine our understanding of the mechanisms that contribute to these problems, and lead to improved prevention efforts. Participants (N = 265) were healthy substance-naïve adolescents (ages 12–14) who underwent magnetic resonance imaging and then were followed annually for up to 13 years. Cortical thickness and surface area measures for three prefrontal regions (dorsolateral prefrontal cortex, inferior frontal gyrus, and orbitofrontal cortex) and three cortical regions from identified functional networks (anterior cingulate cortex, insular cortex, and parietal cortex) were used to predict subsequent binge drinking, externalizing symptoms, and internalizing symptoms. Thinner dorsolateral prefrontal cortex and inferior frontal cortex in early adolescence predicted more binge drinking and externalizing symptoms, respectively, in late adolescence (ps < .05). Having a family history of alcohol use disorder predicted more subsequent binge drinking and externalizing symptoms. Thinner parietal cortex, but not family history, predicted more subsequent internalizing symptoms (p < .05). This study emphasizes the temporal association between maturation of the salience, inhibition, and executive control networks in early adolescence and late adolescent behavior outcomes. Our findings indicate that developmental variations in these brain regions predate behavioral outcomes of substance use and psychopathology, and may therefore serve as prospective biomarkers of vulnerability.

Type
Special Issue Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achenbach, T. M., & Rescorla, L. A. (2001). Manual for the ASEBA school-age forms and profiles. Burlington, VT: University of Vermont, Research Center for Children, Youth, and Families.Google Scholar
Achenbach, T. M., & Rescorla, L. A. (2003). Manual for ASEBA adult forms and profiles. Burlington, VT: University of Vermont, Research Center for Children, Youth, and Families.Google Scholar
Albaugh, M. D., Ducharme, S., Collins, D. L., Botteron, K. N., Althoff, R. R., Evans, A. C., et al. (2013). Evidence for a cerebral cortical thickness network anti-correlated with amygdalar volume in healthy youths: Implications for the neural substrates of emotion regulation. NeuroImage, 71, 4249.Google Scholar
Ameis, S. H., Ducharme, S., Albaugh, M. D., Hudziak, J. J., Botteron, K. N., Lepage, C., et al. (2014). Cortical thickness, cortico-amygdalar networks, and externalizing behaviors in healthy children. Biological Psychiatry, 75, 6572.Google Scholar
Bava, S., & Tapert, S. F. (2010). Adolescent brain development and the risk for alcohol and other drug problems. Neuropsychology Review, 20, 398413.Google Scholar
Beauchaine, T. P., & McNulty, T. (2013). Comorbidities and continuities as ontogenic processes: Toward a developmental spectrum model of externalizing psychopathology. Development and Psychopathology, 25, 15051528.Google Scholar
Brown, S. A., Myers, M. G., Lippke, L., Tapert, S. F., Stewart, D. G., & Vik, P. W. (1998). Psychometric evaluation of the Customary Drinking and Drug Use Record (CDDR): A measure of adolescent alcohol and drug involvement. Journal of Studies on Alcohol, 59, 427438.Google Scholar
Casey, B. J. (2015). Beyond simple models of self-control to circuit-based accounts of adolescent behavior. Annual Review of Psychology, 66, 295319.Google Scholar
Casey, B. J., Jones, R. M., & Somerville, L. H. (2011). Braking and accelerating of the adolescent brain. Journal of Research on Adolescence, 21, 2133.Google Scholar
Chambers, C. D., Garavan, H., & Bellgrove, M. A. (2009). Insights into the neural basis of response inhibition from cognitive and clinical neuroscience. Neuroscience & Biobehavioral Reviews, 33, 631646.CrossRefGoogle ScholarPubMed
Cheetham, A., Allen, N. B., Whittle, S., Simmons, J., Yücel, M., & Lubman, D. (2014). Volumetric differences in the anterior cingulate cortex prospectively predict alcohol-related problems in adolescence. Psychopharmacology, 231, 17311742.Google Scholar
Chein, J., Albert, D., O'Brien, L., Uckert, K., & Steinberg, L. (2011). Peers increase adolescent risk taking by enhancing activity in the brain's reward circuitry. Developmental Science, 14, F1F10.Google Scholar
Crews, F., He, J., & Hodge, C. (2007). Adolescent cortical development: A critical period of vulnerability for addiction. Pharmacology Biochemistry and Behavior, 86, 189199.CrossRefGoogle ScholarPubMed
Crews, F. T., & Boettiger, C. A. (2009). Impulsivity, frontal lobes and risk for addiction. Pharmacology Biochemistry and Behavior, 93, 237247.Google Scholar
Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis: I. Segmentation and surface reconstruction. NeuroImage, 9, 179194.Google Scholar
Desikan, R. S., Segonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., et al. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31, 968980.Google Scholar
Farmer, R. F., Gau, J. M., Seeley, J. R., Kosty, D. B., Sher, K. J., & Lewinsohn, P. M. (2016). Internalizing and externalizing disorders as predictors of alcohol use disorder onset during three developmental periods. Drug and Alcohol Dependence, 164, 3846.Google Scholar
Fischl, B., Sereno, M. I., & Dale, A. M. (1999). Cortical surface-based analysis: II. Inflation, flattening, and a surface-based coordinate system. NeuroImage, 9, 195207.Google ScholarPubMed
Hampshire, A., Chamberlain, S. R., Monti, M. M., Duncan, J., & Owen, A. M. (2010). The role of the right inferior frontal gyrus: Inhibition and attentional control. NeuroImage, 50, 13131319.Google Scholar
Hardee, J. E., Weiland, B. J., Nichols, T. E., Welsh, R. C., Soules, M. E., Steinberg, D. B., et al. (2014). Development of impulse control circuitry in children of alcoholics. Biological Psychiatry, 76, 708716.Google Scholar
Heitzeg, M. M., Nigg, J. T., Hardee, J. E., Soules, M., Steinberg, D., Zubieta, J.-K., et al. (2014). Left middle frontal gyrus response to inhibitory errors in children prospectively predicts early problem substance use. Drug and Alcohol Dependence, 141, 5157.Google Scholar
Hogstrom, L. J., Westlye, L. T., Walhovd, K. B., & Fjell, A. M. (2013). The structure of the cerebral cortex across adult life: Age-related patterns of surface area, thickness, and gyrification. Cerebral Cortex, 23, 25212530.CrossRefGoogle ScholarPubMed
Hussong, A. M., Jones, D. J., Stein, G. L., Baucom, D. H., & Boeding, S. (2011). An internalizing pathway to alcohol use and disorder. Psychology of Addictive Behaviors, 25, 390404.Google Scholar
Jacobus, J., & Tapert, S. F. (2013). Neurotoxic effects of alcohol in adolescence. Annual Review of Clinical Psychology, 9, 703721.Google Scholar
Johnston, L. D., O'Malley, P. M., Miech, R. A., Bachman, J. G., & Schulenberg, J. E. (2015). Monitoring the Future national survey results on drug use: 2014 overview, key findings on adolescent drug use. Ann Arbor, MI: University of Michigan, Institute for Social Research.Google Scholar
Kaiser, R. H., Andrews-Hanna, J. R., Wager, T. D., & Pizzagalli, D. A. (2015). Large-scale network dysfunction in major depressive disorder: A meta-analysis of resting-state functional connectivity. JAMA Psychiatry, 72, 603611.Google Scholar
Lee, T. G., & D'Esposito, M. (2012). The dynamic nature of top-down signals originating from prefrontal cortex: A combined fMRI-TMS Ssudy. Journal of Neuroscience, 32, 1545815466.CrossRefGoogle Scholar
Lenroot, R. K., & Giedd, J. N. (2006). Brain development in children and adolescents: Insights from anatomical magnetic resonance imaging. Neuroscience & Biobehavioral Reviews, 30, 718729.Google Scholar
Masten, A. S., Faden, V. B., Zucker, R. A., & Spear, L. P. (2008). Underage drinking: A developmental framework. Pediatrics, 121(Suppl. 4), S235–S251.Google Scholar
Miller, J. W., Naimi, T. S., Brewer, R. D., & Jones, S. E. (2007). Binge drinking and associated health risk behaviors among high school students. Pediatrics, 119, 7685.CrossRefGoogle ScholarPubMed
Mills, K. L., Goddings, A. L., Clasen, L. S., Giedd, J. N., & Blakemore, S. J. (2014). The developmental mismatch in structural brain maturation during adolescence. Developmental Neuroscience, 36, 147160.CrossRefGoogle ScholarPubMed
NIAAA. (2004). NIAAA Council approves definition of binge drinking. NIAAA newsletter (Vol. 3). Bethesda, MD: Office of Research Translation and Communications, NIAAA, NIH, DHHS.Google Scholar
Norman, A. L., Pulido, C., Squeglia, L. M., Spadoni, A. D., Paulus, M. P., & Tapert, S. F. (2011). Neural activation during inhibition predicts initiation of substance use in adolescence. Drug and Alcohol Dependence, 119, 216223.CrossRefGoogle ScholarPubMed
Panizzon, M. S., Fennema-Notestine, C., Eyler, L. T., Jernigan, T. L., Prom-Wormley, E., Neale, M., et al. (2009). Distinct genetic influences on cortical surface area and cortical thickness. Cerebral Cortex, 19, 27282735.Google Scholar
Pfefferbaum, A., Mathalon, D. H., Sullivan, E. V., Rawles, J. M., Zipursky, R. B., & Lim, K. O. (1994). A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Archives of Neurology, 51, 874887.Google Scholar
Pfefferbaum, A., Rohlfing, T., Rosenbloom, M. J., Chu, W., Colrain, I. M., & Sullivan, E. V. (2013). Variation in longitudinal trajectories of regional brain volumes of healthy men and women (ages 10 to 85 years) measured with atlas-based parcellation of MRI. NeuroImage, 65, 176193.CrossRefGoogle ScholarPubMed
Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis methods (2nd ed.). Thousand Oaks: Sage.Google Scholar
Raznahan, A., Shaw, P., Lalonde, F., Stockman, M., Wallace, G. L., Greenstein, D., et al. (2011). How does your cortex grow? Journal of Neuroscience, 31, 71747177.Google Scholar
Rice, J. P., Reich, T., Bucholz, K. K., Neuman, R. J., Fishman, R., Rochberg, N., et al. (1995). Comparison of direct interview and family history diagnoses of alcohol dependence. Alcoholism: Clinical and Experimental Research, 19, 10181023.Google Scholar
Ridderinkhof, K. R., van den Wildenberg, W. P. M., Segalowitz, S. J., & Carter, C. S. (2004). Neurocognitive mechanisms of cognitive control: The role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward-based learning. Brain and Cognition, 56, 129140.Google Scholar
Schacht, J. P., Anton, R. F., & Myrick, H. (2013). Functional neuroimaging studies of alcohol cue reactivity: A quantitative meta-analysis and systematic review. Addiction Biology, 18, 121133.CrossRefGoogle ScholarPubMed
Schacht, J. P., Anton, R. F., Randall, P. K., Li, X., Henderson, S., & Myrick, H. (2011). Stability of fMRI striatal response to alcohol cues: A hierarchical linear modeling approach. NeuroImage, 56, 6168.CrossRefGoogle ScholarPubMed
Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological Methods, 7, 147177.Google Scholar
Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., et al. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. Journal of Neuroscience, 27, 23492356.Google Scholar
Smith, A. R., Chein, J., & Steinberg, L. (2013). Impact of socio-emotional context, brain development, and pubertal maturation on adolescent risk-taking. Hormones and Behavior, 64, 323332.Google Scholar
Somerville, L. H., Jones, R. M., & Casey, B. J. (2010). A time of change: Behavioral and neural correlates of adolescent sensitivity to appetitive and aversive environmental cues. Brain and Cognition, 72, 124133.Google Scholar
Spear, L. P. (2011). Adolescent neurobehavioral characteristics, alcohol sensitivities, and intake: Setting the stage for alcohol use disorders? Child Development Perspectives, 5, 231238.Google Scholar
Squeglia, L. M., Rinker, D. A., Bartsch, H., Castro, N., Chung, Y., Dale, A. M., et al. (2014). Brain volume reductions in adolescent heavy drinkers. Developmental Cognitive Neuroscience, 9, 117125.CrossRefGoogle ScholarPubMed
Squeglia, L. M., Tapert, S. F., Sullivan, E. V., Jacobus, J., Meloy, M. J., Rohlfing, T., et al. (2015). Brain development in heavy-drinking adolescents. American Journal of Psychiatry, 172, 531542.Google Scholar
Steinberg, L. (2007). Risk taking in adolescence. Current Directions in Psychological Science, 16, 5559.CrossRefGoogle Scholar
Tabibnia, G., Monterosso, J. R., Baicy, K., Aron, A. R., Poldrack, R. A., Chakrapani, S., et al. (2011). Different forms of self-control share a neurocognitive substrate. Journal of Neuroscience, 31, 48054810.CrossRefGoogle Scholar
Twitchell, G., Hertzog, C., Klein, J., & Schuckit, M. (1992). The anatomy of a follow-up. Addiction, 87, 13271333.Google Scholar
van Duijvenvoorde, A. C. K., Achterberg, M., Braams, B. R., Peters, S., & Crone, E. A. (2016). Testing a dual-systems model of adolescent brain development using resting-state connectivity analyses. NeuroImage, 124 (Part A), 409420.Google Scholar
Walhovd, K. B., Tamnes, C. K., Bjørnerud, A., Due-Tønnessen, P., Holland, D., Dale, A. M., et al. (2014). Maturation of cortico-subcortical structural networks—Segregation and overlap of medial temporal and fronto-striatal systems in development. Cerebral Cortex, 25, 18351841.Google Scholar
Wetherill, R. R., Squeglia, L. M., Yang, T. T., & Tapert, S. F. (2013). A longitudinal examination of adolescent response inhibition: Neural differences before and after the initiation of heavy drinking. Psychopharmacology, 230, 663671.Google Scholar
Wierenga, L. M., Langen, M., Oranje, B., & Durston, S. (2014). Unique developmental trajectories of cortical thickness and surface area. NeuroImage, 87, 120126.Google Scholar
Zanto, T. P., & Gazzaley, A. (2013). Fronto-parietal network: Flexible hub of cognitive control. Trends in Cognitive Sciences, 17, 602603.Google Scholar
Zielinski, B. A., Gennatas, E. D., Zhou, J., & Seeley, W. W. (2010). Network-level structural covariance in the developing brain. Proceedings of the National Academy of Sciences, 107, 1819118196.Google Scholar
Zucker, R. A., Heitzeg, M. M., & Nigg, J. T. (2011). Parsing the undercontrol–disinhibition pathway to substance use disorders: A multilevel developmental problem. Child Development Perspectives, 5, 248255.Google Scholar