Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-13T14:23:14.290Z Has data issue: false hasContentIssue false

Neurobiological adaptations to violence across development

Published online by Cambridge University Press:  26 January 2010

Hilary K. Mead
Affiliation:
University of Washington
Theodore P. Beauchaine*
Affiliation:
University of Washington
Katherine E. Shannon
Affiliation:
University of Washington
*
Address correspondence and reprint requests to: Theodore P. Beauchaine, University of Washington, Box 351525, Seattle, WA 98195-1525; E-mail: tbeaucha@u.washington.edu.

Abstract

Developmental adaptations to violent environments involve a multitude of cascading effects spanning many levels of analysis from genes to behavior. In this review, we (a) examine the potentiating effects of violence on genetic vulnerabilities and the functioning of neurotransmitter systems in producing both internalizing and externalizing psychopathology; (b) describe implications of violence exposure for brain development, particularly within the hippocampus and prefrontal cortex; and (c) consider the effects of violence on developing human stress and startle responses. This review integrates literatures on the developmental effects of violence among rodents, nonhuman primates, and humans. Many neurobiological changes that are adaptive for survival in violent contexts become maladaptive in other environments, conferring life-long risk for psychopathology.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, E. K., Klimes-Dougan, B., & Gunner, M. (2007). Social regulation of the adrenocortical response to stress in infants, children, and adolescents. In Coch, D., Dawson, G., & Fischer, K. W. (Eds.), Human behavior, learning, and the developing brain (pp. 264304). New York: Guilford Press.Google Scholar
Anderson, K. E., Lytton, H., & Romney, D. M. (1986). Mothers' interactions with normal and conduct disordered boys: Who affects whom? Developmental Psychology, 22, 604609.CrossRefGoogle Scholar
Arborelius, L., Hawks, B., Owens, M., Plotsky, P., & Nemeroff, C. (2004). Increased responsiveness of presumed 5-HT cells to citalopram in adult rats subjected to prolonged maternal separation relative to brief separation. Psychopharmacology (Berlin), 176, 248255.CrossRefGoogle ScholarPubMed
Arnsten, A. F. T. (1998). The biology of being frazzled. Science, 280, 17111712.CrossRefGoogle ScholarPubMed
Arnsten, A. F. T., & Goldman-Rakic, P. S. (1998). Noise stress impairs prefrontal cortical cognitive function in monkeys: Evidence for a hyperdopaminergic mechanism. Archives of General Psychiatry, 55, 362368.CrossRefGoogle ScholarPubMed
Ayoub, C., & Rappolt-Schlichtmann, G. (2007). Child maltreatment and the development of alternate pathways in biology and behavior. In Coch, D., Dawson, G., & Fischer, K. (Eds.), Human behavior, learning, and the developing brain: Atypical development (pp. 305330). New York: Guilford Press.Google Scholar
Balciuniene, J., Syvänen, A. C., McLeod, H. L., Pettersson, U., & Jazin, E. E. (2001). The geographic distribution of monoamine oxidase haplotypes supports a bottleneck during the dispersion of modern humans from Africa. Journal of Molecular Evolution, 52, 157163.CrossRefGoogle ScholarPubMed
Barr, C. S., Newman, T. K., Shannon, C., Parker, C., Dvoskin, R. L., Becker, M. L., et al. (2004). Rearing condition and rh5-HTTLPR interact to influence limbic–hypothalamic–pituitary–adrenal axis response to stress in infant macaques. Biological Psychiatry, 55, 733738.CrossRefGoogle ScholarPubMed
Beauchaine, T. P. (2001). Vagal tone, development, and Gray's motivational theory: Toward an integrated model of autonomic nervous system functioning in psychopathology. Development and Psychopathology, 13, 183214.CrossRefGoogle ScholarPubMed
Beauchaine, T. P. (2009). Some difficulties in interpreting psychophysiological research with children. Monographs of the Society for Research in Child Development, 509, 8088.CrossRefGoogle Scholar
Beauchaine, T. P., Hinshaw, S. P., & Gatzke-Kopp, L. (2008). Genetic and environmental influences on behavior. In Beauchaine, T. P. & Hinshaw, S. (Eds.), Child and adolescent psychopathology (pp. 5890). Hoboken, NJ: Wiley.Google Scholar
Beauchaine, T. P., Katkin, E. S., Strassberg, Z., & Snarr, J. (2001). Disinhibitory psychopathology in male adolescents: Discriminating conduct disorder from attention-deficit/hyperactivity disorder through concurrent assessment of multiple autonomic states. Journal of Abnormal Psychology, 110, 610624.CrossRefGoogle ScholarPubMed
Beauchaine, T. P., Klein, D. N., Crowell, S. E., Derbidge, C., & Gatzke-Kopp, L. M.(2009). Multifinality in the development of personality disorders: A Biology × Sex × Environment model of antisocial and borderline traits. Development and Psychopathology, 21, 735770.CrossRefGoogle Scholar
Beauchaine, T. P., & Neuhaus, E. (2008). Impulsivity and vulnerability to psychopathology. In Beauchaine, T. P. & Hinshaw, S. (Eds.), Child and adolescent psychopathology (pp. 129156). Hoboken, NJ: Wiley.Google Scholar
Beaver, K. M., DeLisi, M., Vaughn, M. G., & Barnes, J. C.(in press). Monoamine oxidase A genotype is associated with gang membership and weapon use. Comprehensive Psychiatry.Google Scholar
Beers, S. R., & De Bellis, M. D. (2002). Neuropsychologial function in children with maltreatment-related PTSD. American Journal of Psychiatry, 159, 483486.CrossRefGoogle Scholar
Birmaher, B., Dahl, R. E., Perel, J., Williamson, D. E., Nelson, B., Stull, S., et al. (1996). Corticotropin-releasing hormone challenge in prepubertal depression. Biological Psychiatry, 39, 267277.CrossRefGoogle Scholar
Bowden, C. L., Deutsch, C. K., & Swanson, J. M. (1988). Plasma dopamine-β-hydroxylase and platelet monoamine oxidase in attention deficit disorder and conduct disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 27, 171174.CrossRefGoogle ScholarPubMed
Brenner, S., Beauchaine, T. P., & Sylvers, P. (2005). A comparison of psychophysiological and self-report measures of BAS and BIS activation. Psychophysiology, 42, 108115.CrossRefGoogle ScholarPubMed
Bremner, J. D. (2005). Effects of traumatic stress on brain structure and function: Relevance to early responses to trauma. Journal of Trauma and Dissociation, 6, 5168.CrossRefGoogle ScholarPubMed
Bremner, J. D., Innis, R. B., Ng, C. K., Staib, L., Duncan, J., Bronen, R., et al. (1997). PET measurement of cerebral metabolic correlates of yohimbine administration in posttraumatic stress disorder. Archives of General Psychiatry, 54, 246256.CrossRefGoogle Scholar
Bremner, J. D., Narayan, M., Staib, L. H., Southwick, S. M., McGlashan, T., & Charney, D. S. (1999). Neural correlates of memories of childhood sexual abuse in women with and without posttraumatic stress disorder. American Journal of Psychiatry, 156, 17871795.CrossRefGoogle ScholarPubMed
Bremner, J. D., Vythilingam, M., Vermetten, E., Southwick, S. M., McGlashan, T., Staib, L., et al. (2003). Neural correlates of declarative memory for emotionally valenced words in women with posttraumatic stress disorder (PTSD) related to early childhood sexual abuse. Biological Psychiatry, 53, 289299.CrossRefGoogle ScholarPubMed
Bugental, D. B., Martorell, G. A., & Barraza, V. (2003). The hormonal costs of subtle forms of infant maltreatment. Hormones and Behavior, 43, 237244.CrossRefGoogle ScholarPubMed
Butler, R. W., Braff, D. L., Rausch, J. L., Jenkins, M. A., Sprock, J., & Geyer, M. A. (1990). Physiological evidence of exaggerated startle response in a subgroup of Vietnam veterans with combat-related PTSD. American Journal of Psychiatry, 147, 13081312.Google Scholar
Cabib, S., & Puglisi-Allegra, S. (1996). Stress, depression, and the mesolimbic dopamine system. Psychopharmacology (Berlin), 128, 331342.CrossRefGoogle ScholarPubMed
Cahill, L., Prins, B., Weber, M., & McGaugh, J. (1994). Beta-adrenergic activation and memory for emotional events. Nature, 371, 702.CrossRefGoogle ScholarPubMed
Caldji, C., Tannenbaum, B., Sharma, S., Francis, D., Plotsky, P. M., & Meaney, M. J. (1998). Maternal care during infancy regulates the development of neural systems mediating the expression of fearfulness in the rat. Proceedings of the National Academy of Sciences of the United States of America, 95, 53355340.CrossRefGoogle ScholarPubMed
Carrasco, G. A., & Van de Kar, L. D. (2003). Neuroendocrine pharmacology of stress. European Journal of Pharmacology, 463, 235272.CrossRefGoogle ScholarPubMed
Carrion, V., Weems, C., Eliez, S., Patwardhan, A., Brown, W., Ray, R. D., et al. (2001). Attenuation of frontal asymmetry in pediatric posttraumatic stress disorder. Biological Psychiatry, 50, 943951.CrossRefGoogle ScholarPubMed
Carrion, V., Weems, C., Ray, R., Glaser, B., Hessl, D., & Reiss, A. (2002). Diurnal salivary cortisol in pediatric posttraumatic stress disorder. Biological Psychiatry, 51, 575582.CrossRefGoogle ScholarPubMed
Carrion, V., Weems, C., & Reiss, A. L. (2007). Stress predicts brain changes in children: A pilot longitudinal study on youth stress, posttraumatic stress disorder, and the hippocampus. Pediatrics, 119, 509516.CrossRefGoogle ScholarPubMed
Caspi, A., McClay, J., Moffitt, T. E., Mill, J., Martin, J., Craig, I. W., et al. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297, 851854.CrossRefGoogle ScholarPubMed
Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., et al. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 301, 386389.CrossRefGoogle ScholarPubMed
Castellanos, F. X., Elia, J., Kruesi., M. J., Gulotta, C. S., Mefford, I. N., Potter, W. Z., et al. (1994). Cerebrospinal fluid monoamine metabolites in boys with attention-deficit hyperactivity disorder. Psychiatry Research, 52, 305316.CrossRefGoogle ScholarPubMed
Charney, D. S. (2004). Psychobiological mechanisms of resilience and vulnerability: Implications for successful adaptation to extreme stress. American Journal of Psychiatry, 161, 195216.CrossRefGoogle ScholarPubMed
Cicchetti, D. (2008). A multiple levels of analysis perspective on research in development and psychopathology. In Beauchaine, T. P. & Hinshaw, S. (Eds.), Child and adolescent psychopathology (pp. 2757). Hoboken, NJ: Wiley.Google Scholar
Cicchetti, D., & Curtis, W. J. (2006). The developing brain and neural plasticity: Implications for normality, psychopathology, and resilience. In Cicchetti, D. & Cohen, D. (Eds.), Developmental psychopathology: Vol. 2. Developmental neuroscience (2nd ed., pp. 164). Hoboken, NJ: Wiley.Google Scholar
Cicchetti, D., & Rogosch, F. A. (2001a). Diverse patterns of neuroendocrine activity in maltreated children. Development and Psychopathology, 13, 677693.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Rogosch, F. A. (2001b). The impact of child maltreatment and psychopathology on neuroendocrine functioning, Development and Psychopathology, 13, 783804.CrossRefGoogle ScholarPubMed
Cicchetti, D., Rogosch, F. A., & Sturge-Apple, M. L. (2007). Interactions of child maltreatment and serotonin transporter and monoamine oxidase A polymorphisms: Depressive symptomatology among adolescents from low socioeconomic status backgrounds. Development and Psychopathology, 19, 11611180.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Toth, S. L. (1995). A developmental psychopathology perspective on child abuse and neglect. Journal of the American Academy of Child & Adolescent Psychiatry, 34, 541565.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Toth, S. L. (2005). Child maltreatment. Annual Review of Clinical Psychology, 1, 409438.CrossRefGoogle ScholarPubMed
Cloninger, C. R. (1987). A systematic method for clinical description and classification of personality variants. A proposal. Archives of General Psychiatry, 44, 573588.CrossRefGoogle ScholarPubMed
Coccaro, E. F., Siever, L. J., Klar, H. M., Maurer, G., Cochrane, K., Cooper, T. B., et al. (1989). Serotonergic studies in patients with affective and personality disorders. Correlates with suicidal and impulsive aggressive behavior. Archives of General Psychiatry, 46, 587599.CrossRefGoogle ScholarPubMed
Coplan, J. D., Andrews, M. W., Rosenblum, L. A., Owens, M. J., Friedman, S., Gorman, J. M., et al. (1996). Persistent elevations of cerebrospinal fluid concentrations of corticotrophin-releasing factor in adult nonhuman primates exposed to early-life stressors: Implications for the pathophysiology of mood and anxiety disorders. Proceedings of the National Academy of Sciences of the United States of America, 93, 16191623.CrossRefGoogle ScholarPubMed
Coplan, J. D., Trost, R. C., Owens, M. J., Cooper, T. B., Gorman, J. M., Nemeroff, C. B., et al. (1998). Cerebrospinal fluid concentrations of somatostatin and biogenic amines in grown primates reared by mothers exposed to manipulated foraging conditions. Archives of General Psychiatry, 55, 473477.CrossRefGoogle ScholarPubMed
Covington, H. E., & Miczek, K. A. (2005). Intense cocaine self-administration after episodic social defeat stress, but not after aggressive behavior: Dissociation from corticosterone activation. Psychopharmacology (Berlin), 183, 331340.CrossRefGoogle Scholar
Cravchik, A., & Goldman, D. (2000). Neurochemical individuality: Genetic diversity among human dopamine and serotonin receptors and transporters. Archives of General Psychiatry, 57, 11051114.CrossRefGoogle ScholarPubMed
Crowell, S., Beauchaine, T. P., Gatzke-Kopp, L., Sylvers, P., Mead, H., & Chipman-Chacon, J. (2006). Autonomic correlates of attention-deficit/hyperactivity disorder and oppositional defiant disorder in preschool children. Journal of Abnormal Psychology, 115, 174178.CrossRefGoogle ScholarPubMed
Cubells, J. F., & Zabetian, C. P. (2004). Human genetics of plasma dopamine beta-hydroxylase activity: Applications to research in psychiatry and neurology. Psychopharmacology (Berlin), 174, 462476.CrossRefGoogle ScholarPubMed
Cummins, R. A., & Livesey, P. (1979). Enrichment-isolation, cortex length, and the rank order effect. Brain Research, 178, 8898.CrossRefGoogle ScholarPubMed
De Bellis, M. (2005). The psychobiology of neglect. Child Maltreatment, 10, 150172.CrossRefGoogle ScholarPubMed
De Bellis, M. D., Baum, A. S., Birmaher, B., Keshavan, M. S., Eccard, C. H., Boring, A. M., et al. (1999). Developmental traumatology part I: Biological stress systems. Biological Psychiatry, 45, 12591270.CrossRefGoogle ScholarPubMed
De Bellis, M. D., Chrousos, G. P., Dorn, L. D., Burke, L., Helmers, K., Kling, M. A., et al. (1994). Hypothalamic–pituitary–adrenal axis dysregulation in sexually abused girls. Journal of Clinical Endocrinology and Metabolism, 78, 249255.Google ScholarPubMed
De Bellis, M. D., Hall, J., Boring, A. M., Frustraci, K., & Moritz, G. (2001). A pilot longitudinal study of hippocampal volumes in pediatric maltreatment-related posttraumatic stress disorder. Biological Psychiatry, 50, 305309.CrossRefGoogle ScholarPubMed
De Bellis, M. D., Keshavan, M. S., Clark, D. B., Casey, B. J., Giedd, J. N., Boring, A. M. (1999). Developmental traumatology part II: Brain development. Biological Psychiatry, 45, 12711284.CrossRefGoogle ScholarPubMed
De Bellis, M. D., Keshavan, M. S., Shifflett, H., Iyengar, S., Beers, S. R., Hall, J., et al. (2002). Brain structures in pediatric maltreatment-related posttraumatic stress disorder: A sociodemographically matched study. Biological Psychiatry, 52, 10661078.CrossRefGoogle ScholarPubMed
De Bellis, M. D., Keshavan, M. S., Spencer, S., & Hall, J. (2000). N-Acetylasparatate concentration in the anterior cingulated in maltreated children and adolescents with PTSD. American Journal of Psychiatry, 157, 11751177.CrossRefGoogle Scholar
De Bellis, M. D., Lefter, L., Trickett, P. K., & Putnam, F. W. Jr. (1994). Urinary catecholamine excretion in sexually abused girls. Journal of the American Academy of Child & Adolescent Psychiatry, 33, 320327.CrossRefGoogle ScholarPubMed
Delahanty, D. L., Nugent, N. R., Christopher, N. C., & Walsh, M. (2005). Initial urinary epinephrine and cortisol levels predict acute PTSD symptoms in child trauma victims. Psychoneuroendocrinology, 30, 121128.CrossRefGoogle ScholarPubMed
Derryberry, D., & Tucker, D. M. (2006). Motivation, self-regulation, and self-organization. In Cicchetti, D. & Cohen, D. J. (Eds.), Developmental psychopathology: Vol. 2. Developmental neuroscience (2nd ed., pp. 502533). Hoboken, NJ: Wiley.Google Scholar
Dettling, A., Pryce, C. R., Martin, R. D., & Döbelli, M. (1998). Physiological responses to parental separation and a strange situation are related to parental care received in juvenile Goeldi's monkeys (Callimico goeldii). Developmental Psychobiology, 33, 2131.3.0.CO;2-U>CrossRefGoogle Scholar
Dodge, K. A. (1993). Social–cognitive mechanisms in the development of conduct disorder and depression. Annual Review of Psychology, 44, 559584.CrossRefGoogle ScholarPubMed
Doornbos, B., Fokkema, D. S., Molhoek, M., Tanke, M. A. C., Postema, F., & Korf, J. (2009). Abrupt rather than gradual hormonal changes induce postpartum blues-like behavior in rats. Life Sciences, 84, 6974.CrossRefGoogle ScholarPubMed
Dozier, M., Peloso, E., Lindhiem, O., Gordon, M. K., Manni, M, Sepulveda, S., et al. (2006). Developing evidence-based interventions for foster children: An example of a randomized clinical trial with infants and toddlers. Journal of Social Issues, 62, 767785.CrossRefGoogle Scholar
Drevets, W. C., Frank, J. C., Kupfer, D. J., Holt, D., Greer, P. J., Huang, Y., et al. (1999). PET imaging of serotonin 1A receptor binding in depression. Biological Psychiatry, 46, 13751387.CrossRefGoogle ScholarPubMed
Drevets, W. C., Thase, M. E., Moses-Kolko, E. L., Price, J., Frank, E., Kupfer, D. J., et al. (2007). Serotonin-1A receptor imaging in recurrent depression: Replication and literature review. Nuclear Medicine and Biology, 34, 865877.CrossRefGoogle ScholarPubMed
Egan, M. F., Kojima, M., Callicott, J. H., Goldberg, T. E., Kolachana, B. S., Bertolino, A., et al. (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 112, 257269.CrossRefGoogle ScholarPubMed
Eley, T. C., Sugden, K., Corsico, A., Gregory, A. M., Sham, P., McGuffin, P., et al. (2004). Gene-environment interaction analysis of serotonin system markers with adolescent depression. Molecular Psychiatry, 9, 908915.CrossRefGoogle ScholarPubMed
Figueiredo, H. F., Bruestle, A., Bodie, B., Dolgas, C. M., & Herman, J. P. (2003). The medial prefrontal cortex differentially regulates stress-induced c-FOS expression in the forebrain depending on type of stressor. European Journal of Neuroscience, 18, 23572364.CrossRefGoogle ScholarPubMed
Fisher, P. A., Gunnar, M. R., Chamberlain, P., & Reid, J. B. (2000). Preventive intervention for maltreated preschool children: Impact on children's behavior, neuroendocrine activity, and foster parent functioning. Journal of the American Academy of Child & Adolescent Psychiatry, 39, 13561364.CrossRefGoogle ScholarPubMed
Flory, J. D., Newcorn, J. H., Miller, C., Harty, S., & Halperin, J. M. (2007). Serotonergic function in children with attention-deficit hyperactivity disorder: Relationship to later antisocial personality disorder. British Journal of Psychiatry, 190, 410414.CrossRefGoogle ScholarPubMed
Flügge, G., van Kampen, M., & Mijnster, M. J. (2004). Perturbations in brain monoamine systems during stress. Cell and Tissue Research, 315, 114.CrossRefGoogle ScholarPubMed
Foley, D. L., Eaves, L. J., Wormley, B., Silberg, J. L., Maes, H. H., Kuhn, J., et al. (2004). Childhood adversity, monoamine oxidase a genotype, and risk for conduct disorder. Archives of General Psychiatry, 61, 738744.CrossRefGoogle ScholarPubMed
Fowles, D. (1988). Psychophysiology and psychopathology: A motivational approach. Psychophysiology, 25, 373391.CrossRefGoogle ScholarPubMed
Francis, D., Diorio, J., Liu, D., & Meaney, M. J. (1999). Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science, 286, 11551158.CrossRefGoogle ScholarPubMed
Fuchs, E., & Flügge, G. (1995). Modulation of binding sites for corticotrophin-releasing hormone by chronic psychosocial stress. Psychoneuroendocrinology, 20, 3351.CrossRefGoogle ScholarPubMed
Gabel, S., Stadler, J., Bjorn, J., Shindledecker, R., & Bowden, C. (1993). Dopamine-beta-hydroxylase in behaviorally disturbed youth. Relationship between teacher and parent ratings. Biological Psychiatry, 1, 434442.CrossRefGoogle Scholar
Galvin, M., Shekhar, A., Simon, J., Stilwell, B., Ten Eyck, R., Laite, G., et al. (1991). Low dopamine-beta-hydroxylase: A biological sequela of abuse and neglect? Psychiatry Research, 39, 111.CrossRefGoogle ScholarPubMed
Galvin, M., Ten Eyck, R., Shekhar, A., Stilwell, B., Fineberg, N., Laite, G., et al. (1995). Serum dopamine beta hydroxylase and maltreatment in psychiatrically hospitalized boys. Child Abuse & Neglect, 19, 821832.CrossRefGoogle ScholarPubMed
Galvin, M., Stilwell, B. M., Shekhar, A., Kopta, S. M., & Goldfarb, S. M. (1997). Maltreatment, conscience functioning and dopamine beta hydroxylase in emotionally disturbed boys. Child Abuse & Neglect, 21, 8392.CrossRefGoogle ScholarPubMed
Gatzke-Kopp, L., & Beauchaine, T. P. (2007). Central nervous system substrates of impulsivity: Implications for the development of attention-deficit/hyperactivity disorder and conduct disorder. In Coch, D., Dawson, G., & Fischer, K. (Eds.), Human behavior and the developing brain: Atypical development (pp. 239263). New York: Guilford Press.Google Scholar
Gatzke-Kopp, L. M., & Shannon, K. E. (2008). Brain injury as a risk factor for psychopathology. In Beauchaine, T. P. & Hinshaw, S. P. (Eds.), Child and adolescent psychopathology (pp. 208233). Hoboken, NJ: Wiley.Google Scholar
Gershon, A., Vishne, T., & Grunhaus, L. (2007). Dopamine D2-like receptors and the antidepressant response. Biological Psychiatry, 61, 145153.CrossRefGoogle ScholarPubMed
Gilbertson, M. W., Shenton, M. E., Ciszewski, A., Kasai, K., Lasko, N. B., Orr, S. P., et al. (2002). Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma. Nature Neuroscience, 5, 12421247.CrossRefGoogle ScholarPubMed
Glaser, D. (2000). Child abuse and neglect and the brain—A review. Journal of Child Psychology and Psychiatry, 41, 97116.CrossRefGoogle ScholarPubMed
Goodyer, I. M., Herbert, J., & Altham, P. M. (1998). Adrenal steroid secretion and major depression in 8- to 16-year-olds, III. Influence of cortisol/DHEA ratio at presentation on subsequent rates of disappointing life events and persistent major depression. Psychological Medicine, 28, 265273.CrossRefGoogle ScholarPubMed
Gottman, J. M., & Katz, L. (1989). Effects of marital discord on young children's peer interaction and health. Developmental Psychology, 25, 373381.CrossRefGoogle Scholar
Graham, F. K. (1975). The more or less startling effects of weak prestimulation. Psychophysiology, 12, 238248.CrossRefGoogle ScholarPubMed
Gray, J. A. (1982). The neuropsychology of anxiety: An enquiry into the functions of the septo-hippocampal system. New York: Oxford University Press.Google Scholar
Gray, J. A. (1987). Perspectives on anxiety and impulsivity: A commentary. Journal of Research in Personality, 21, 493509.CrossRefGoogle Scholar
Gray, J. A., & McNaughton, N. (2000). The neuropsychology of anxiety: An enquiry into the functions of the septo-hippocampal system (2nd ed.). New York: Oxford University Press.Google Scholar
Grillon, C., Dierker, L., & Merikangas, K. R. (1997). Startle modulation in children at risk for anxiety disorders and/or alcoholism. Journal of the American Academy of Child & Adolescent Psychiatry, 36, 925932.CrossRefGoogle ScholarPubMed
Grillon, C., & Morgan, C. A. (1999). Fear-potentiated startle conditioning to explicit and contextual cues in Gulf War veterans with posttraumatic stress disorder. Journal of Abnormal Psychology, 108, 134142.CrossRefGoogle ScholarPubMed
Grillon, C., Morgan, C. A., Davis, M., & Southwick, S. M. (1999). Effects of experimental context and explicit threat cues on acoustic startle in Vietnam veterans with posttraumatic stress disorder. Biological Psychiatry, 44, 10271036.CrossRefGoogle Scholar
Grillon, C., Morgan, C. A., Southwick, S. M., Davis, M., & Charney, D. S. (1996). Baseline startle amplitude and prepulse inhibition in Vietnam veterans with posttraumatic stress disorder. Psychiatry Research, 64, 169178.CrossRefGoogle ScholarPubMed
Guthrie, R. M., & Bryant, R. A. (2005). Auditory startle response in firefighters before and after trauma exposure. American Journal of Psychiatry, 162, 283290.CrossRefGoogle ScholarPubMed
Gunnar, M. R., & Vasquez, D. M. (2006). Stress neurobiology and developmental psychopathology. In Cicchetti, D. & Cohen, D. (Eds.), Developmental psychopathology: Vol. 2. Developmental neuroscience (pp. 533577). New York: Wiley.Google Scholar
Haberstick, B. C., Lessem, J. M., Hopfer, C. J., Smolen, A., Ehringer, M. A., Timberlake, D., et al. (2005). Monoamine oxidase A (MAOA) and antisocial behaviors in the presence of childhood and adolescent maltreatment. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 135, 5964.CrossRefGoogle Scholar
Halperin, J. M., Newcorn, J. H., Schwartz, S. T., Sharma, V., Siever, L. J., Koda, V. H., et al. (1997). Age-related changes in the association between serotonergic function and aggression in boys with ADHD. Biological Psychiatry, 41, 682689.CrossRefGoogle ScholarPubMed
Hart, J., Gunnar, M., & Cicchetti, D. (1995). Salivary cortisol in maltreated children: Evidence of relations between neuroendocrine activity and social competence. Development and Psychopathology, 7, 1126.CrossRefGoogle Scholar
Hart, J., Gunnar, M., & Cicchetti, D. (1996). Altered neuroendocrine activity in maltreated children related to symptoms of depression. Development and Psychopathology, 8, 201214.CrossRefGoogle Scholar
Hatalski, C. G., Guirguis, C., & Baram, T. Z. (1998). Corticotropin releasing factor mRNA expression in the hypothalamic paraventricular nucleus and the central nucleus of the amygdale is modulated by repeated acute stress in the immature rat. Journal of Neuroendocrinology, 10, 663669.CrossRefGoogle Scholar
Heim, C., & Nemeroff, C. B. (2001). Childhood trauma, depression, and anxiety. Biological Psychiatry, 49, 10231039.CrossRefGoogle Scholar
Hidalgo, R. B., & Davidson, J. R. (2000). Selective serotonin reuptake inhibitors in post-traumatic stress disorder. Journal of Psychopharmacology, 14, 7076.CrossRefGoogle ScholarPubMed
Holroyd, C. B., & Coles, M. G. H. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109, 679709.CrossRefGoogle ScholarPubMed
Huizinga, D., Haberstick, B. C., Smolen, A., Menard, S., Young, S. E., Corley, R. P., et al. (2006). Childhood maltreatment, subsequent antisocial behavior, and the role of monoamine oxidase a genotype. Biological Psychiatry, 60, 677683.CrossRefGoogle ScholarPubMed
Imperato, A., Cabib, S., & Puglisi-Allegra, S. (1993). Repeated stressful experiences differently affect the time-dependent responses of the mesolimbic dopamine system to the stressor. Brain Research, 60, 333336.CrossRefGoogle Scholar
Isovich, E., Mijnster, M. J., Flügge, G., & Fuchs, E. (2000). Chronic psychosocial stress reduces the density of dopamine transporters. The European Journal of Neuroscience, 12, 10711078.CrossRefGoogle ScholarPubMed
Jaffee, S. R., Caspi, A., Moffitt, T. E., Dodge, K. A., Rutter, M., Taylor, A., et al. (2005). Nature × Nurture: Genetic vulnerabilities interact with physical maltreatment to promote conduct problems. Development and Psychopathology, 17, 6784.CrossRefGoogle ScholarPubMed
Jaffee, S. R., Caspi, A., Moffitt, T. E., Polo-Tomas, M., Price, T. S., & Taylor, A. (2004). The limits of child effects: Evidence for genetically mediated child effects on corporal but not on physical maltreatment. Developmental Psychology, 40, 10471058.CrossRefGoogle Scholar
Jaffee, S. R., Caspi, A., Moffitt, T. E., & Taylor, A. (2004). Physical maltreatment victim to antisocial child: Evidence of an environmentally mediated process. Journal of Abnormal Psychology, 113, 4455.CrossRefGoogle ScholarPubMed
Kaler, S., & Freeman, B. (1994). Analysis of environmental deprivation: Cognitive and social development in Romanian orphans. Journal of Child Psychology and Psychiatry, 35, 769781.CrossRefGoogle ScholarPubMed
Kaufman, J. (1991). Depressive disorders in maltreated children. Journal of the American Academy of Child & Adolescent Psychiatry, 30, 257265.CrossRefGoogle ScholarPubMed
Kaufman, J., Birmaher, B., Brent, D., Dahl, R., Bridge, J., & Ryan, N. D. (1998). Psychopathology in the relatives of depressed-abused children. Child Abuse and Neglect, 22, 171181.CrossRefGoogle ScholarPubMed
Kaufman, J., Birmaher, B., Perel, J., Dahl, R., Moreci, P., Nelson, B., et al. (1997). The corticotropin-releasing challenge in depressed abused, depressed non-abused, and normal children. Biological Psychiatry, 42, 669679.CrossRefGoogle Scholar
Kaufman, J., Birmaher, B., Perel, J., Dahl, R., Stull, S., Brent, D., et al. (1998). Serotonergic functioning in depressed abused children: Clinical and family correlates. Biological Psychiatry, 44, 973981.CrossRefGoogle Scholar
Kaufman, J., Yang, B.-Z., Douglas-Palumberi, H., Grasso, D., Lipschitz, D., Houshyar, S., et al. (2006). Brain-derived neurotrophic factor–5-HTTLPR gene interactions and environmental modifiers of depression in children. Biological Psychiatry, 59, 673680.CrossRefGoogle ScholarPubMed
Kaufman, J., Yang, B.-.Z, Douglas-Palumberi, H., Houshyar, S., Lipschitz, D., Krystal, J. H., et al. (2004). Social support and serotonin transporter gene moderate depression in maltreated children. Proceedings of the National Academy Sciences of the United States of America, 101, 1731617321.CrossRefGoogle ScholarPubMed
Keen-Rhinehart, E., Michopoulos, V., Toufexis, D. J., Martin, E., Nair, H., Ressler, K. J., et al. (2009). Continuous expression of corticotrophin-releasing factor in the central nucleus of the amygdale emulates the dysregulation of the stress and reproductive axes. Molecular Psychiatry, 19, 3750.CrossRefGoogle Scholar
Kendler, K. S., Kessler, R. C., Walters, E. E., MacLean, C., Neale, M. C., Heath, A. C., et al. (1995). Stressful life events, genetic liability, and onset of an episode of major depression in women. American Journal of Psychiatry, 152, 833842.Google ScholarPubMed
Kendler, K. S., Kuhn, J. W., Vittum, J., Prescott, C. A., & Riley, B. (2005). The interaction of stressful life events and a serotonin transporter polymorphism in the prediction of episodes of major depression: A replication. Archives of General Psychiatry, 62, 529535.CrossRefGoogle Scholar
Kendler, K. S., & Karkowski-Shuman, L. (1997). Stressful life events and genetic liability to major depression: Genetic control of exposure to the environment? Psychological Medicine, 27, 539547.CrossRefGoogle ScholarPubMed
Kim, C. H., Zabetian, C. P., Cubells, J. F., Cho, S., Biaggioni, I., Cohen, B. M., et al. (2002). Mutations in the dopamine beta-hydroxylase gene are associated with human norepinephrine deficiency. American Journal of Medical Genetics, 108, 140147.CrossRefGoogle ScholarPubMed
Kim-Cohen, J., Caspi, A., Taylor, A., Williams, B., Newcombe, R., Craig, I. W., et al. (2006). MAOA, maltreatment, and gene–environment interaction predicting children's mental health: New evidence and a meta analysis. Molecular Psychiatry, 11, 903913.CrossRefGoogle ScholarPubMed
Kliewer, W. (2006). Violence exposure and cortisol responses in urban youth. International Journal of Behavioral Medicine, 13, 109120.CrossRefGoogle ScholarPubMed
Klimes-Dougan, B., Hastings, P. D., Granger, D. A., Usher, B. A., & Zahn-Waxler, C. (2001). Adrenocortical activity in at-risk and normally developing adolescents: individual differences in salivary cortisol basal levels, diurnal variation, and responses to social challenges. Development and Psychopathology, 13, 695719.CrossRefGoogle ScholarPubMed
Klorman, R., Cicchetti, D., Thatcher, J. E., & Ison, J. R. (2003). Acoustic startle in maltreated children. Journal of Abnormal Child Psychology, 31, 359370.CrossRefGoogle ScholarPubMed
Kruesi, M. J., Hibbs, E. D., Zahn, T. P., Keysor, C. S., Hamburger, S. D., Bartko, J. J., et al. (1992). A 2-year prospective follow-up study of children and adolescents with disruptive behavior disorders. Prediction by cerebrospinal fluid 5-hydroxyindoleacetic acid, homovanillic acid, and autonomic measures? Archives of General Psychiatry, 49, 429435.CrossRefGoogle ScholarPubMed
Kruesi, M. J., Rapoport, J. L., Hamburger, S. D., Hibbs, E. D., Potter, W. Z., Lenane, M., et al. (1990). Cerebrospinal fluid monoamine metabolites, aggression, and impulsivity in disruptive behavior disorders of children and adolescents. Archives of General Psychiatry, 47, 419426.CrossRefGoogle ScholarPubMed
Kunugi, H., Hattori, M., Kato, T., Tatsumi, M., Sakai, T., Sasaki, T., et al. (1997). Serotonin transporter polymorphisms: Ethnic difference and possible association with bipolar affective disorder. Molecular Psychiatry, 2, 457462.CrossRefGoogle ScholarPubMed
Laasko, A., Wallius, E., Kajander, J., Bergman, J., Eskola, O., Solin, O., et al. (2003). Personality traits and striatal dopamine synthesis capacity in healthy subjects. American Journal of Psychiatry, 160, 904910.Google Scholar
Ladd, C. O., Owens, M. J., & Nemeroff, C. B. (1996). Persistent changes in corticotrophin-releasing factor neuronal systems induced by maternal deprivation. Endocrinology, 137, 12121218.CrossRefGoogle ScholarPubMed
Ladd, C. O., Huot, R. L., Thrivikraman, K. V., & Plotsky, P. M. (1998). Persistent alterations in the negative feedback regulation of the hypothalamic–pituitary–adrenal (HPA) axis in maternally-separated adult Long–Evans hooded rats. Society for Neuroscience Abstracts, 24, 117.Google Scholar
Ladd, C. O., Huot, R. L., Thrivikraman, K. V., & Plotsky, P. M. (1999). Reversal of the maternal separation phenotype by reboxetine. Society for Neuroscience Abstracts, 25, 1456.Google Scholar
Lanfumey, L., Mannoury La Cour, C., Froger, N., & Hamon, M. (2000). 5-HT–HPA interactions in two models of transgenic mice relevant to major depression. Neurochemical Research, 25, 11991206.CrossRefGoogle ScholarPubMed
Latzman, R. D., & Swisher, R. R. (2005). The interactive relationship among adolescent violence, street violence, and depression. Journal of Community Psychology, 33, 355371.CrossRefGoogle Scholar
LeDoux, J. (1998). Fear and the brain: Where have we been, and where are we going? Biological Psychiatry, 44, 12291238.CrossRefGoogle ScholarPubMed
Lee, V., & Hoaken, P. N. S. (2007). Cognition, emotion, and neurobiologial development: Mediating the relation between maltreatment and aggression. Child Maltreatment, 12, 281298.CrossRefGoogle Scholar
Lemieux, A. M., & Coe, C.L. (1995).Abuse-related posttraumatic stress disorder: Evidence for chronic neuroendocrine activation in women. Psychosomatic Medicine, 57, 105115.CrossRefGoogle ScholarPubMed
Lewis, D. A. (2000). The catecholamine innervation of primate cerebral cortex. In Solanto, M. V., Arnsten, A. F. T., & Castellanos, F. X. (Eds.), Stimulant drugs and ADHD: Basic and clinical neuroscience. Oxford: Oxford University Press.Google Scholar
Lindley, S. E., Bengoechea, T. G., Wong, D. L., & Schatzberg, A. F. (2002). Mesotelencephalic dopamine neurochemical responses to glucocorticoid administration and adrenalectomy in Fischer 344 and Lewis rats, Brain Research, 958 414422.CrossRefGoogle ScholarPubMed
Lindley, S. E., She, X., & Schatzberg, A. F. (2005). Monoamine oxidase and catechol-o-methyltransferase enzyme activity and gene expression in response to sustained glucocorticoids. Psychoneuroendocrinology, 38, 785790.CrossRefGoogle Scholar
Lipschitz, D. S., Mayes, L. M., Rasmusson, A. M., Anyan, W., Billingslea, E., Gueorgueva, R., et al. (2005). Baseline and modulated acoustic startle responses in adolescent girls with posttraumatic stress disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 44, 807814.CrossRefGoogle ScholarPubMed
Liu, D., Caldji, C., Sharma, S., Plotsky, P.M., & Meaney, M. J. (2000). Influence of neonatal rearing conditions on stress-induced adrenocorticotropin responses and norepinephrine release in the hypothalamic paraventricular nucleus. Journal of Neuroendocrinology, 12, 512.CrossRefGoogle ScholarPubMed
Liu, D., Diorio, J., Tannanbaum, B., Caldji, C., Francis, D., Freedman, A., et al. (1997). Maternal care, hippocampal glucocorticoid receptors, and hypothalamic–pituitary–adrenal responses to stress. Science, 277, 16591662.CrossRefGoogle ScholarPubMed
Lucas, L. R., Celen, Z., Tamashiro, K. L. K., Blanchard, R. J., Blanchard, D. C., Markham, C., et al. (2004). Repeated exposure to social stress has long term effects on indirect markers of dopaminergic activity in brain regions associated with motivated behavior. Neuroscience, 124, 449457.CrossRefGoogle ScholarPubMed
Lucas, L. R., Wang, C.-J., McCall, T. J., & McEwen, B. S. (2007). Effects of immobilization stress on neurochemical markers in the motivational system of the male rat. Brain Research, 1155, 108115.CrossRefGoogle ScholarPubMed
Lucki, I. (1998). The spectrum of behaviors influenced by serotonin. Biological Psychiatry, 44, 151162.CrossRefGoogle ScholarPubMed
Maestripieri, D., Higley, J. D., Lindell, S. G., Newman, T. K., McCormack, K., & Sánchez, M. M. (2006). Early maternal rejection affects the development of monoaminergic systems and adult abusive parenting in rhesus macaques (Macaca mulatta). Behavioral Neuroscience, 120, 10171024.CrossRefGoogle ScholarPubMed
Maestripieri, D., McCormack, K., Lindell, S. G., Higley, J. D., & Sánchez, M. M. (2006). Influence of parenting style on the offspring's behavior and CSF monoamine metabolite levels in crossfostered and noncrossfostered female rhesus macaques. Behavioral Brain Research, 175, 9095.CrossRefGoogle ScholarPubMed
Margolin, G. (2005). Children's exposure to violence: Exploring diverse pathways. Journal of Interpersonal Violence, 20, 7281.CrossRefGoogle Scholar
Mathew, S. J., Coplan, J. D., Sith, E. L. P., Schare, B. A., Owens, M. J., & Nemeroff, C. B. (2002). Cerebrospinal fluid concentrations of biogenic amines and corticotrophin-releasing factor in adolescent non-human primates as a function of the timing of adverse early rearing. Stress, 5, 185193.CrossRefGoogle ScholarPubMed
McArthur, S., McHale, D., & Gillies, G. E. (2007). The size and distribution of midbrain dopaminergic populations are permanently altered by perinatal glucocorticoid exposure in a sex region and time related manner. Neuropsychopharmacology, 32, 14621476.CrossRefGoogle Scholar
McEwen, B. S., & Sapolsky, R. M. (1995). Stress and cognitive function. Current Opinion in Neurobiology, 5, 205216.CrossRefGoogle ScholarPubMed
McKittrick, C. R., Blanchard, D. C., Blanchard, R. J., McEwen, B. S., & Sakai, R. R. (1995). Serotonin receptor binding in a colony model of chronic social stress. Biological Psychology, 37, 383393.Google Scholar
Meaney, M. J., Brake, W., & Gratton, A. (2002). Environmental regulation of the development of mesolimbic dopamine systems: A neurobiological mechanism for vulnerability to drug abuse? Psychoneuroendocrinology, 27, 127138.CrossRefGoogle ScholarPubMed
Meaney, M. J., Diorio, D., Francis, J., Widdowson, J., LaPlante, P., Caldji, C., et al. (1996). Early environmental regulation of forebrain glucocorticoid receptor gene expression: implications for adrenocortical responses to stress. Developmental Neuroscience, 18, 4972.CrossRefGoogle ScholarPubMed
Metzger, I. J., Orr, S. P., Berry, N. J., Ahern, C. E., Lasko, N. B., & Pitman, R. K. (1999). Physiologic reactivity to startling tones in women with posttraumatic stress disorder. Journal of Abnormal Psychology, 108, 347352.CrossRefGoogle ScholarPubMed
Miczek, K. A., Covington, H. E., Nikulina, E. M., & Hammer, R. P. (2004). Aggression and defeat: Persistent effects on cocaine self-administration and gene expression in peptidergic and aminergic mesocorticolimbic circuits. Neuroscience and Biobehavioral Reviews, 27, 787802.CrossRefGoogle ScholarPubMed
Millan, M A., Jacobowitz, D. M., Hauger, R. L., Catt, K. J., & Aguilera, G. (1986). Distribution of corticotrophin-releasing factor receptors in primate brain. Proceedings of the National Academy of Sciences of the United States of America, 83, 19211925.CrossRefGoogle ScholarPubMed
Mirescu, C., Peters, J. D., & Gould, E. (2004). Early life experience alters response of adult neurogenesis to stress. Nature Neuroscience, 7, 841846.CrossRefGoogle ScholarPubMed
Mohanty, A., Engels, A. S., Herrington, J. D., Heller, W., Ringo Ho, M., Banich, M. T., et al. (2007). Differential engagement of anterior cingulate cortex subdivisions for cognitive and emotional function. Psychophysiology, 44, 343351.CrossRefGoogle ScholarPubMed
Morgan, C. A., Grillon, C., Lubin, H., & Southwick, S. M. (1997). Startle reflex abnormalities in women with sexual assault-related posttraumatic stress disorder. American Journal of Psychiatry, 154, 10761080.Google ScholarPubMed
Morgan, C. A., Grillon, C., Lubin, H., Southwick, S. M., Davis, M., & Charney, D. S. (1995). Fear-potentiated startle in posttraumatic stress disorder. Biological Psychiatry, 38, 378385.CrossRefGoogle ScholarPubMed
Morgan, C. A., Grillon, C., Southwick, S. M., Davis, M., & Charney, D. S. (1996). Exaggerated acoustic startle reflex in Gulf War veterans with posttraumatic stress disorder. American Journal of Psychiatry, 153, 6468.Google ScholarPubMed
Nakamura, M., Ueno, S., Sano, A., & Tanabe, H. (2000).The human serotonin transporter gene linked polymorphism (5-HTTLPR) shows ten novel allelic variants. Molecular Psychiatry, 5, 3238.CrossRefGoogle ScholarPubMed
Narusyte, J., Andershed, A.-K., Neiderhiser, J. M., & Lichtenstein, P. (2007). Aggression as a mediator of genetic contributions to the association between negative parent–child relationships and adolescent antisocial behavior. European Child & Adolescent Psychiatry, 16, 128137.CrossRefGoogle Scholar
Neiderhiser, J. M., Reiss, D., Pedersen, N. L., Lichtenstein, P., Spotts, E. L., Hansson, K., et al. (2004). Genetic and environmental influences on mothering of adolescents: a comparison of two samples. Developmental Psychology, 40, 335351.CrossRefGoogle ScholarPubMed
Neumeister, A., Bain, E., Nugent, A. C., Cason, R. E., Bonne, O., & Luckenbough, D. A. (2004). Reduced serotonin type 1A receptor binding in panic disorder. Journal of Neuroscience, 24, 589591.CrossRefGoogle ScholarPubMed
Nesse, R. M. (2000). Is depression an adaptation? Archives of General Psychiatry, 57, 1420.CrossRefGoogle ScholarPubMed
Ng-Mak, D. S., Salzinger, S., Feldman, R. S., & Stueve, C. A. (2004). Pathologic adaptation to community violence among inner-city youth. American Journal of Orthopsychiatry, 74, 196208.CrossRefGoogle ScholarPubMed
O'Connor, T., Deater-Deckard, K., Fulker, D., Rutter, M., & Plomin, R. (1998). Genotype–environment correlations in late childhood and early adolescence: Antisocial behavior problems and coercive parenting. Developmental Psychology, 34, 970981.CrossRefGoogle ScholarPubMed
Ornitz, E. M., & Pynoos, R. (1989). Startle modulation in children with posttraumatic stress disorder. American Journal of Psychiatry, 146, 866870.Google ScholarPubMed
Orr, S. P., Lasko, N. B., Metzger, L. J., & Pitman, R. K. (1997). Physiologic responses to non-startling tones in Vietnam veterans with post-traumatic stress disorder. Psychiatry Research, 73, 103107.CrossRefGoogle ScholarPubMed
Orr, S. P., Metzger, L. J., Lasko, N. B., Macklin, M. L., Hu, F. B., Shalev, A. Y., et al. (2003). Physiologic responses to sudden loud tones in monozygotic twins discordant for combat exposure. Archives of General Psychiatry, 60, 283288.CrossRefGoogle ScholarPubMed
Orr, S. P., Soloman, Z., Peri, T., Pitman, R. K., & Shalev, A. Y. (1997). Physiologic responses to loud tones in Israeli veterans of the 1973 Yom Kippur War. Biological Psychiatry, 41, 319326.CrossRefGoogle ScholarPubMed
Panagiotaropoulos, T., Pondiki, S., Papaioannou, A., Alikaridis, F., Stamatakis, A., Gerozissis, K., et al. (2004). Neonatal handling and gender modulate brain monamines and plasma corticosterone levels following repeated stressors in adulthood. Neuroendocrinology, 80, 181191.CrossRefGoogle Scholar
Papaioannou, A., Dafni, U., Alikaridis, F., Bolaris, S., & Styllianopoulou, F. (2002). Effects of neonatal handling on basal and stress-induced monoamine levels in the male and female rat brain. Neuroscience, 114, 195206.CrossRefGoogle ScholarPubMed
Parker, K. J., Rainwater, K. L., Buckmaster, C. L., Schatzberg, A. F., Lindley, S. E., & Lyons, D. M. (2007). Early life stress and novelty seeking behavior in adolescent monkeys. Psychoneuroendocrinology, 32, 785792.CrossRefGoogle ScholarPubMed
Patel, P. D., Katz, M., Karssen, A. M., & Lyons, D. M. (2008). Stress-induced changes in corticosteroid receptor expression in primate hippocampus and prefrontal cortex. Psychoneuroendocrinology, 33, 360367.CrossRefGoogle ScholarPubMed
Patterson, G. R. (1982). Coercive Family Processes: Vol. 3. A social learning approach. Eugene, OR: Castilia.Google Scholar
Patterson, G. R., Capaldi, D., & Bank, L. (1991). An early starter model for predicting delinquency. In Pepler, D. & Rubin, K. H. (Eds.), The development and treatment of childhood aggression (pp. 139168), Hillsdale, NJ: Erlbaum.Google Scholar
Patterson, G. R., DeGarmo, D. S., & Knutson, N. (2000). Hyperactive and antisocial behaviors: Comorbid or two points in the same process? Development and Psychopathology, 12, 91106.CrossRefGoogle ScholarPubMed
Perry, B. D. (2008). Child maltreatment: A neurodevelopmental perspective on the role of trauma and neglect in psychopathology. In Beauchaine, T. P. & Hinshaw, S. P.. (Eds.), Child and adolescent psychopathology (pp. 93128). Hoboken, NJ: Wiley.Google Scholar
Pezawas, L., Verchinski, B. A., Mattay, V. S., Callicott, J. H., Kolachana, B. S., Straub, R. E., et al. (2004). The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology. Journal of Neuroscience, 24, 1009910102.CrossRefGoogle ScholarPubMed
Pine, D. S., Coplan, J. D., Wasserman, G. A., Miller, L. S., Fried, J. E., Davies, M., et al. (1997). Neuroendocrine response to fenfluramine challenge in boys: Associations with aggressive behavior and adverse rearing. Archives of General Psychiatry, 54, 839846.CrossRefGoogle ScholarPubMed
Porges, S. W. (1995). Cardiac vagal tone: A physiological index of stress. Neuroscience and Biobehavioral Reviews, 19, 225233.CrossRefGoogle Scholar
Quay, H. C. (1993). The psychobiology of undersocialized aggressive conduct disorder: A theoretical perspective. Development and Psychopathology, 5, 165180.CrossRefGoogle Scholar
Quay, H. C. (1997). Inhibition and attention deficit hyperactivity disorder. Journal of Abnormal Child Psychology, 25, 713.CrossRefGoogle ScholarPubMed
Rinne, T., Westenberg, H. G. M., den Boer, J. A., & van den Brink, W. (2000). Serotonergic blunting to meta-chlorophenylpiperazine (m-CPP) highly correlates with sustained childhood abuse in impulsive and autoaggressive female borderline patients. Biological Psychiatry, 47, 548556.CrossRefGoogle ScholarPubMed
Risch, N., Herrell, R., Lehner, T., Liang, K.-Y., Eaves, L., Hoh, J., et al. (2009). Interaction Between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: a meta-analysis. Journal of the American Medical Association, 301, 24622471.CrossRefGoogle ScholarPubMed
Rogeness, G. A., Amrung, S. A., & Harris, W. R. (1984). Clinical characteristics of emotionally disturbed boys with very low activities of dopamine beta hydroxylase. Journal of the American Academy of Child & Adolescent Psychiatry, 23, 203208.Google ScholarPubMed
Rogeness, G. A., Hernandez, J. M., Macedo, C. A., Amrung, S. A., & Hoppe, S. K. (1986). Near-zero plasma dopamine-β-hydroxylase and conduct disorder in emotionally disturbed boys. Journal of the American Academy of Child & Adolescent Psychiatry, 25, 521527.Google ScholarPubMed
Rogeness, G. A., Javors, M. A., & Pliszka, S. R. (1992). Neurochemistry and child and adolescent psychiatry. Journal of the American Academy of Child & Adolescent Psychiatry, 31, 765781.CrossRefGoogle ScholarPubMed
Rogeness, G. A., & McClure, E. B. (1996). Development and neurotransmitter–environment interactions. Development and Psychopathology, 8, 183199.CrossRefGoogle Scholar
Rosenblum, L. A., Forger, C., Noland, S., Trost, R. C., & Coplan, J. D. (2001). Response of adolescent bonnet macaques to an acute fear stimulus as a function of early rearing conditions. Developmental Psychobiology, 39, 4045.CrossRefGoogle Scholar
Rosenblum, L. A., & Paully, G. S. (1984). The effects of varying environmental demands on maternal and infant behavior. Child Development, 55, 305314.CrossRefGoogle ScholarPubMed
Rosenblum, L. A., Coplan, J. D., Friedman, S., Bassoff, T., Gorman, J. M., & Andrews, M. W. (1994). Adverse early experiences affect noradrenergic and serotonergic functioning in adult primates. Biological Psychiatry, 35, 221227.CrossRefGoogle ScholarPubMed
Rutter, M., Moffitt, T. E., & Caspi, A. (2006). Gene–environment interplay and psychopathology: Multiple varieties but real effects. Journal of Child Psychology and Psychiatry, 47, 226261.CrossRefGoogle ScholarPubMed
Rutter, M., O'Connor, , & the English and Roman Adoptees (ERA) Study Team. (2004). Are there biological programming effects for psychological development? Findings from a study of Romanian Adoptees. Developmental Psychology, 40, 8194.CrossRefGoogle ScholarPubMed
Sagvolden, T., Johansen, E. B., Aase, H., & Russell, V. A. (2005). A dynamic developmental theory of attention-deficit/hyperactivity disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes. Behavioral and Brain Sciences, 28, 397468.CrossRefGoogle ScholarPubMed
Sala, M., Perez, J., Soloff, P., Ucelli di Nemi, S., Caversazi, E., Soares, J. C., et al. (2004). Stress and hippocampal abnormalities in psychiatric disorders. European Neuropsychopharmacology, 14, 393405.CrossRefGoogle ScholarPubMed
Saltzman, K. M., Holden, G. W., & Holahan, C. J. (2005). The psychobiology of children exposed to marital violence. Journal of Clinical Child and Adolescent Psychology, 34, 129139.CrossRefGoogle ScholarPubMed
Sánchez, M. M. (2006). The impact of early adverse care on HPA axis development: Nonhuman primate models. Hormones and Behavior, 50, 623631.CrossRefGoogle ScholarPubMed
Sánchez, M. M., Ladd, C. O., & Plotsky, P. M. (2001). Early adverse experience as a developmental risk factor for later psychopathology: Evidence from rodent and primate models. Development and Psychopathology, 13, 419449.CrossRefGoogle ScholarPubMed
Sapolsky, R. M. (1998). Why zebras don't get ulcers: An updated guide to stress, stress-related diseases, and coping. New York: W. H. Freeman.Google Scholar
Sapolsky, R. M. (2000). Stress hormones: Good and bad. Neurobiology of Disease, 7, 540542.CrossRefGoogle ScholarPubMed
Sapolsky, R. M., Uno, H., Rebert, C. S., & Finch, C. E. (1990). Hippocampal damage associated with prolonged glucocorticoid exposure in primates. Journal of Neuroscience, 10, 28972902.CrossRefGoogle ScholarPubMed
Scheres, A., Milham, M. P., Knutson, B., & Castellanos, F. X. (2007). Ventral striatal hyporesponsiveness during reward anticipation in attention-deficit/hyperactivity disorder, Biological Psychiatry, 61, 720724.CrossRefGoogle ScholarPubMed
Schulz, K. P., Newcorn, J. H., McKay, K. E., Himelston, J., Koda, V. H., Siever, L. J., et al. (2001). Relationship between central serotonergic function and aggression in prepubertal boys: Effect of age and attention-deficit/hyperactivity disorder. Psychiatry Research, 101, 110.CrossRefGoogle ScholarPubMed
Schwab-Stone, M. E., Ayers, T. S., Kasprow, W., Voyce, C., Barone, C., Shriver, T., et al. (1995). No safe haven: A study of violence exposure in an urban community. Journal of the American Academy of Child & Adolescent Psychiatry, 34, 13431352.CrossRefGoogle Scholar
Segrin, C. (2000). Social skills deficits associated with depression. Clinical Psychology Review, 20, 379403.CrossRefGoogle ScholarPubMed
Shalev, A. Y., Orr, S. P., Peri, T., Schreiber, S., & Pitman, R. K. (1992). Physiologic responses to loud tones in Israeli posttraumatic stress disorder patients. Archives of General Psychiatry, 11, 870875.CrossRefGoogle Scholar
Shalev, A. Y., Peri, T., Orr, S. P., Bonne, O., & Pitman, R. K. (1997). Auditory startle responses in help-seeking trauma survivors. Psychiatry Research, 69, 17.CrossRefGoogle ScholarPubMed
Sheikh, N., Ahmad, A., Siripurapu, K. B., Kumar Kuchibhotla, V. K., Singh, S., & Palit, G. (2007). Effect of Bacopa monniera on stress induced changes in plasma corticosterone and brain monoamines in rats. Journal of Ethnopharmacology, 111, 671676.CrossRefGoogle ScholarPubMed
Shin, L. M., McNally, R. J., Kosslyn, S. M., Thompson, W. L., Rauch, S. L., Alpert, N. M., et al. (1999). Regional cerebral blood flow during script-driven imagery in childhood sexual abuse-related PTSD: A PET investigation. American Journal of Psychiatry, 156, 575584.CrossRefGoogle ScholarPubMed
Shin, L. M., Kosslyn, S. M., McNally, R. J., Alpert, N. M., Thompson, W. L., Rauch, S. L., et al. (1997). Visual imagery and perception in posttraumatic stress disorder: A positron emission tomographic investigation. Archives of General Psychiatry, 54, 233237.CrossRefGoogle ScholarPubMed
Smith, M. E. (2005). Bilateral hippocampal volume reduction in adults with post-traumatic stress disorder: A meta-analysis of structural MRI studies. Hippocampus, 15, 798807.CrossRefGoogle ScholarPubMed
Snyder, J., Edwards, P., McGraw, K., Kilgore, K., & Holton, A. (1994). Escalation and reinforcement in mother–child conflict: Social processes associated with the development of physical aggression. Development and Psychopathology, 6, 305321.CrossRefGoogle Scholar
Snyder, J., Schrepferman, L., & St. Peter, C. (1997). Origins of antisocial behavior: Negative reinforcement and affect dysregulation of behavior as socialization mechanisms in family interaction. Behavior Modification, 21, 187215.CrossRefGoogle ScholarPubMed
Sroufe, A. (1997). Psychopathology as an outcome of development. Development and Psychopathology, 9, 251268.CrossRefGoogle ScholarPubMed
Sroufe, A., & Rutter, M. (1984). The domain of developmental psychopathology. Child Development, 55, 1729.CrossRefGoogle ScholarPubMed
Stone, E., & McCarty, R. (1983). Adaptation to stress: Tyrosine hydroxylase activity and catecholamine release. Neuroscience and Biobehavioral Reviews, 7, 29.CrossRefGoogle ScholarPubMed
Strauss, J., Barr, C. L., George, C. J., King, N., Shaikh, S., Devlin, B., et al. (2004). Association study of brain-derived neurotrophic factor in adults with a history of childhood onset mood disorder. American Journal of Medical Genetics: Neuropsychiatric Genetics, 131, 1619.Google Scholar
Suhara, T., Yasuno, F., Sudo, Y., Yamamoto, M., Inoue, M., Okubo, Y., et al. (2001). Dopamine D2 receptors in the insular cortex and the personality trait of novelty seeking. Neuroimage, 13, 891895.CrossRefGoogle ScholarPubMed
Tanaka, M., Yoshida, M., Emoto, H., & Ishii, H. (2000). Noradrenaline systems in the hypothalamus, amygdala, and locus coeruleus are involved in the provocation of anxiety: Basic studies. European Journal of Pharmacology, 405, 397406.CrossRefGoogle ScholarPubMed
Tarullo, A. R., & Gunnar, M. R. (2006). Child maltreatment and the developing HPA axis. Hormones and Behavior, 50, 632639.CrossRefGoogle ScholarPubMed
Taylor, S. E., Way, B. M., Welch, W. T., Hilmert, C. J., Lehman, B. J., & Eisenberger, N. L. (2006). Early family environment, current adversity, the serotonin transporter promoter polymorphism, and depressive symptomatology. Biological Psychiatry, 60, 671676.CrossRefGoogle ScholarPubMed
Teicher, M. H., Andersen, S. L., Polcari, A., Anderson, C. M., Navalta, C. P., & Kim, D. M. (2003). The neurobiological consequences of early stress and childhood maltreatment. Neuroscience and Biobehavioral Reviews, 27, 3344.CrossRefGoogle ScholarPubMed
Tsigos, C., & Chrousos, G. P. (2002). Hypothalamic–pituitary–adrenal axis, neuroendocrine factors and stress. Journal of Psychosomatic Research, 53, 865871.CrossRefGoogle ScholarPubMed
Tupler, L. A., & De Bellis, M. D. (2006). Segmented hippocampal volume in children and adolescents with posttraumatic stress disorder. Biological Psychiatry, 59, 523529.CrossRefGoogle ScholarPubMed
Twitchell, G. R., Hanna, G. L., Cook, E. H., Fitzgerald, H. E., Little, K. Y., & Zucker, R. A. (1998). Overt behavior problems and serotonergic function in middle childhood among male and female offspring of alcoholic fathers. Alcoholism: Clinical and Experimental Research, 22, 13401348.CrossRefGoogle ScholarPubMed
Uno, H., Eisele, S., Sakai, A., Shelton, S., Baker, E., DeJesus, O., et al. (1994). Neurotoxicity of glucocorticoids in the primate brain. Hormones and Behavior, 28, 336348.CrossRefGoogle ScholarPubMed
Veenema, A. H., Blume, A., Niederle, , Buwalda, B., & Neumann, I. D. (2006). Effects of early life stress on adult male aggression and hypothalamic vasopressin and serotonin. European Journal of Neuroscience, 24, 17111720.CrossRefGoogle ScholarPubMed
Weaver, I. A. C., Cervoni, N., Champagne, F. A., Alessio, A. C. D., Sharma, S., & Seckl, J. R. (2004). Epigenetic programming by maternal behavior. Nature Neuroscience, 7, 847854.CrossRefGoogle ScholarPubMed
Wichers, M., Kenis, G., Jacobs, N., Mengelers, R., Derom, C., Vlietinck, R., et al. (2008). The BDNF Val66 × 5-HTTLPR × Child Adversity interaction and depressive symptoms: An attempt at replication. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 147B, 120123.CrossRefGoogle Scholar
Widom, C. S., & Brzustowicz, L. M. (2006). MAOA and the “cycle of violence”: Childhood abuse and neglect, MAOA genotype, and risk for violent and antisocial behavior. Biological Psychiatry, 60, 684689.CrossRefGoogle ScholarPubMed
Wilson, D. K., Kliewer, W., Teasley, N., Plybon, L., & Sica, D. A. (2002). Violence exposure, catecholamine excretion, and blood pressure nondipping status in African American male versus female adolescents. Psychosomatic Medicine, 64, 906915.Google ScholarPubMed
Young, S. E., Smolen, A., Hewitt, J. K., Haberstick, B. C., Stallings, M. C., Corley, R. P., et al. (2006). Interaction between MAO-A genotype and maltreatment in the risk for conduct disorder: Failure to confirm in adolescent patients. American Journal of Psychiatry, 163, 10191025.CrossRefGoogle ScholarPubMed
Zahrt, J., Taylor, J. R., Mathew, R. G., & Arnsten, A. F. T. (1997). Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance. Journal of Neuroscience, 17, 85288535.CrossRefGoogle ScholarPubMed