Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-14T01:03:27.495Z Has data issue: false hasContentIssue false

Serotonin functioning and adolescents' alcohol use: A genetically informed study examining mechanisms of risk

Published online by Cambridge University Press:  23 May 2017

Frances L. Wang*
Affiliation:
Arizona State University
Laurie Chassin
Affiliation:
Arizona State University
John E. Bates
Affiliation:
Indiana University Bloomington
Danielle Dick
Affiliation:
Virginia Commonwealth University
Jennifer E. Lansford
Affiliation:
Duke University
Gregory S. Pettit
Affiliation:
Auburn University
Kenneth A. Dodge
Affiliation:
Duke University
*
Address correspondence and reprint requests to: Frances L. Wang, Department of Psychology, Arizona State University, 950 South McAllister Avenue, P.O. Box 871104, Tempe, AZ 85287-1104; E-mail: frances.wang@asu.edu.

Abstract

The current study used data from two longitudinal samples to test whether self-regulation, depressive symptoms, and aggression/antisociality were mediators in the relation between a polygenic score indexing serotonin (5-HT) functioning and alcohol use in adolescence. The results from an independent genome-wide association study of 5-hydroxyindoleacetic acid in the cerebrospinal fluid were used to create 5-HT polygenic risk scores. Adolescents and/or parents reported on adolescents’ self-regulation (Time 1), depressive symptoms (Time 2), aggression/antisociality (Time 2), and alcohol use (Time 3). The results showed that 5-HT polygenic risk did not predict self-regulation. However, adolescents with higher levels of 5-HT polygenic risk showed greater depression and aggression/antisociality. Adolescents’ aggression/antisociality mediated the relation between 5-HT polygenic risk and later alcohol use. Deficits in self-regulation also predicted depression and aggression/antisociality, and indirectly predicted alcohol use through aggression/antisociality. Pathways to alcohol use were especially salient for males from families with low parental education in one of the two samples. The results provide insights into the longitudinal mechanisms underlying the relation between 5-HT functioning and alcohol use (i.e., earlier aggression/antisociality). There was no evidence that genetically based variation in 5-HT functioning predisposed individuals to deficits in self-regulation. Genetically based variation in 5-HT functioning and self-regulation might be separate, transdiagnostic risk factors for several types of psychopathology.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This work was supported by Grants AA016213 and AA022097 (to L.C.) and AA023128 (to F.L.W.) from the National Institute on Alcohol Abuse and Alcoholism. Genotyping was supported by the Midwest Alcohol Research Center (P50 AA011998). The Child Development Project has been funded by Grants MH56961, MH57024 (including supplemental funds in response to NOT-RM-05-007 for collection of DNA), and MH57095 from the National Institute of Mental Health, HD30572 from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, and DA016903 from the National Institute on Drug Abuse.

References

Achenbach, T. M. (1991). Manual for the Child Behavior Checklist/4–18 and 1991 Profile. Burlington, VT: University of Vermont, Research Center for Children, Youth, and Families.Google Scholar
Achenbach, T. M., & Rescorla, L. A. (2001). ASEBA School Age Forms and Profiles. Burlington, VT: University of Vermont, Research Center for Children, Youth, and Families.Google Scholar
Ahadi, S. A., & Rothbart, M. K. (1994). Temperament, development, and the Big Five. In Kohnstamm, G. & Halverson, C. (Eds.), The developing structure of temperament and personality from infancy to adulthood (pp. 189207). Hillsdale, NJ: Erlbaum.Google Scholar
Aiken, L., & West, S. (1991). Multiple regression: Testing and interpreting interactions. Newbury Park, CA: Sage.Google Scholar
Allen, P. P., Cleare, A. J., Lee, F., Fusar-Poli, P., Tunstall, N., Fu, C. H., … McGuire, P. K. (2006). Effect of acute tryptophan depletion on pre-frontal engagement. Psychopharmacology, 187, 486497.CrossRefGoogle ScholarPubMed
Asberg, M., Thoren, P., Traskman, L., Bertilsson, L., & Ringberger, V. (1976). “Serotonin depression”—A biochemical subgroup within the affective disorders? Science, 191, 478480.CrossRefGoogle ScholarPubMed
Balldin, J., Berggren, U., Engel, J., Eriksson, M., Hård, E., & Söderpalm, B. (1994). Effect of citalopram on alcohol intake in heavy drinkers. Alcoholism: Clinical and Experimental Research, 18, 11331136.CrossRefGoogle ScholarPubMed
Ballenger, J. C., Goodwin, F. K., Major, L. F., & Brown, G. L. (1979). Alcohol and central serotonin metabolism in man. Archives of General Psychiatry, 36, 224227.CrossRefGoogle ScholarPubMed
Banki, C. M. (1981). Factors influencing monoamine metabolites and tryptophan in patients with alcohol dependence. Journal of Neural Transmission, 50, 89101.CrossRefGoogle ScholarPubMed
Benkelfat, C., Ellenbogen, M. A., Dean, P., & Palmour, R. M. (1994). Mood-lowering effect of tryptophan depletion: Enhanced susceptibility in young men at genetic risk for major affective disorders. Archives of General Psychiatry, 51, 687697.CrossRefGoogle ScholarPubMed
Bergen, S. E., Gardner, C. O., & Kendler, K. S. (2007). Age-related changes in heritability of behavioral phenotypes over adolescence and young adulthood: A meta-analysis. Twin Research and Human Genetics, 10, 423433.CrossRefGoogle Scholar
Birmaher, B., Kaufman, J., Brent, D. A., Dahl, R. E., Al-Shabbout, M., Nelson, B., … Ryan, N. D. (1997). Neuroendocrine response to 5-hydroxy-L-tryptophan in prepubertal children at high risk of major depressive disorder. Archives of General Psychiatry, 54, 11131119.CrossRefGoogle ScholarPubMed
Birmaher, B., Stanley, M., Greenhill, L., Twomey, J., Gavrilescu, A., & Rabinovich, H. (1990). Platelet imipramine binding in children and adolescents with impulsive behavior. Journal of the American Academy of Child & Adolescent Psychiatry, 29, 914918.CrossRefGoogle ScholarPubMed
Bongers, I. L., Koot, H. M., van der Ende, J., & Verhulst, F. C. (2003). The normative development of child and adolescent problem behavior. Journal of Abnormal Psychology, 112, 179192.CrossRefGoogle ScholarPubMed
Booij, L., Van der Does, V., & Willem, A. J. (2007). Cognitive and serotonergic vulnerability to depression: Convergent findings. Journal of Abnormal Psychology, 116, 8694.CrossRefGoogle ScholarPubMed
Borg, S., Kvande, H., Liljeberg, P., Mossberg, D., & Valverius, P. (1985). 5-hydroxyindoleacetic acid in cerebrospinal fluid in alcoholic patients under different clinical conditions. Alcohol, 2, 415418.CrossRefGoogle ScholarPubMed
Bradley, R. H., & Corwyn, R. F. (2002). Socioeconomic status and child development. Annual Review of Psychology, 53, 371399.CrossRefGoogle ScholarPubMed
Bukstein, O. G., Brent, D. A., & Kaminer, Y. (1989). Comorbidity of substance abuse and other psychiatric disorders in adolescents. American Journal of Psychiatry, 146, 11311141.Google ScholarPubMed
Canli, T., & Lesch, K. P. (2007). Long story short: The serotonin transporter in emotion regulation and social cognition. Nature Neuroscience, 10, 11031109.CrossRefGoogle ScholarPubMed
Cao, J., LaRocque, E., & Li, D. (2013). Associations of the 5-hydroxytryptamine (serotonin) receptor 1B gene (HTR1B) with alcohol, cocaine, and heroin abuse. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 162, 169176.CrossRefGoogle Scholar
Capaldi, D. M., & Rothbart, M. K. (1992). Development and validation of an early adolescent temperament measure. Journal of Early Adolescence, 12, 153173.CrossRefGoogle Scholar
Carver, C. S., Johnson, S. L., & Joormann, J. (2008). Serotonergic function, two-mode models of self-regulation, and vulnerability to depression: What depression has in common with impulsive aggression. Psychological Bulletin, 134, 912943.CrossRefGoogle ScholarPubMed
Caspi, A., Moffitt, T. E., Newman, D. L., & Silva, P. A. (1996). Behavioral observations at age 3 years predict adult psychiatric disorders: Longitudinal evidence from a birth cohort. Archives of General Psychiatry, 53, 10331039.CrossRefGoogle ScholarPubMed
Chassin, L., Barrera, M., Bech, K., & Kossak-Fuller, J. (1992). Recruiting a community sample of adolescent children of alcoholics: A comparison of three subject sources. Journal of Studies on Alcohol, 53, 316319.CrossRefGoogle ScholarPubMed
Chassin, L., Lee, M. R., Cho, Y. I., Wang, F. L., Agrawal, A., Sher, K. J., & Lynskey, M. T. (2012). Testing multiple levels of influence in the intergenerational transmission of alcohol disorders from a developmental perspective: The example of alcohol use promoting peers and μ-opioid receptor M1 variation. Development and Psychopathology, 24, 953967.CrossRefGoogle ScholarPubMed
Chassin, L., Pitts, S. C., & Prost, J. (2002). Binge drinking trajectories from adolescence to emerging adulthood in a high-risk sample: Predictors and substance abuse outcomes. Journal of Consulting and Clinical Psychology, 70, 6778.CrossRefGoogle Scholar
Cicchetti, D., & Rogosch, F. A. (2002). A developmental psychopathology perspective on adolescence. Journal of Consulting and Clinical Psychology, 70, 620.CrossRefGoogle ScholarPubMed
Clarke, H., Flint, J., Attwood, A. S., & Munafo, M. R. (2010). Association of the 5-HTTLPR genotype and unipolar depression: A meta-analysis. Psychological Medicine, 40, 17671778.CrossRefGoogle ScholarPubMed
Cleare, A. J., & Bond, A. J. (1995). The effect of tryptophan depletion and enhancement on subjective and behavioural aggression in normal male subjects. Psychopharmacology, 118, 7281.CrossRefGoogle ScholarPubMed
Cleare, A. J., Murray, R. M., & O'Keane, V. (1996). Reduced prolactin and cortisol responses to d-fenfluramine in depressed compared to healthy matched control subjects. Neuropsychopharmacology, 14, 349354.CrossRefGoogle ScholarPubMed
Coccaro, E. F. (1992). Impulsive aggression and central serotonergic system function in humans: An example of a dimensional brain-behavior relationship. International Clinical Psychopharmacology, 7, 312.CrossRefGoogle ScholarPubMed
Conway, K. P., Swendsen, J., Husky, M. M., He, J. P., & Merikangas, K. R. (2016). Association of lifetime mental disorders and subsequent alcohol and illicit drug use: Results from the National Comorbidity Survey—Adolescent Supplement. Journal of the American Academy of Child & Adolescent Psychiatry. Advance online publication. doi:10.1016/j.jaac.2016.01.006 CrossRefGoogle ScholarPubMed
Cowen, P. J. (2002). Cortisol, serotonin, and depression: All stressed out. British Journal of Psychiatry, 180, 99100.CrossRefGoogle ScholarPubMed
Delgado, P. L., Charney, D. S., Price, L. H., Aghajanian, G. K., Landis, H., & Heninger, G. R. (1990). Serotonin function and the mechanism of antidepressant action: Reversal of antidepressant-induced remission by rapid depletion of plasma tryptophan. Archives of General Psychiatry, 47, 411418.CrossRefGoogle ScholarPubMed
Dencker, S. J., Malm, U., Roos, B. E., & Werdinius, B. (2006). Acid monoamine metabolites of cerebrospinal fluid in mental depression and mania. Journal of Neurochemistry, 13, 15451548.CrossRefGoogle Scholar
Dennis, T. A., & Brotman, L. M. (2003). Effortful control, attention, and aggressive behavior in preschoolers at risk for conduct problems. Annals of the New York Academy of Sciences, 1008, 252255.CrossRefGoogle ScholarPubMed
Duke, A. A., Bègue, L., Bell, R., & Eisenlohr-Moul, T. (2013). Revisiting the serotonin–aggression relation in humans: A meta-analysis. Psychological Bulletin, 139, 11481172.CrossRefGoogle ScholarPubMed
Eisenberg, N., Duckworth, A. L., Spinrad, T. L., & Valiente, C. (2012). Conscientiousness: Origins in childhood? Developmental Psychology, 50, 13311349.CrossRefGoogle ScholarPubMed
Eisenberg, N., Smith, C. L., & Spinrad, T. L. (2004). Effortful control: Relations with emotion regulation, adjustment, and socialization in childhood. In Vohs, K. D. & Baumeister, R. F. (Eds.), Handbook of self-regulation: Research, theory, and applications (Vol. 2, pp. 263283). New York: Guilford Press.Google Scholar
Eisenberg, N., Spinrad, T. L., & Morris, A. S. (2002). Regulation, resiliency, and quality of social functioning. Self and Identity, 1, 121128.CrossRefGoogle Scholar
Eisenberg, N., Valiente, C., Spinrad, T. L., Cumberland, A., Liew, J., Reiser, M., … Losoya, S. H. (2009). Longitudinal relations of children's effortful control, impulsivity, and negative emotionality to their externalizing, internalizing, and co-occurring behavior problems. Developmental Psychology, 45, 9881008.CrossRefGoogle ScholarPubMed
Eisenberg, N., Zhou, Q., Spinrad, T. L., Valiente, C., Fabes, R. A., & Liew, J. (2005). Relations among positive parenting, children's effortful control, and externalizing problems: A three-wave longitudinal study. Child Development, 76, 10551071.CrossRefGoogle ScholarPubMed
Else-Quest, N. M., Hyde, J. S., Goldsmith, H. H., & Van Hulle, C. A. (2006). Gender differences in temperament: A meta-analysis. Psychological Bulletin, 132, 3372.CrossRefGoogle ScholarPubMed
Endicott, J., Anderson, N., & Spitzer, R. L. (1975). Family History Diagnostic Criteria. New York: Biometrics Research, New York Psychiatric Institute.Google Scholar
Enoch, M. A., Gorodetsky, E., Hodgkinson, C., Roy, A., & Goldman, D. (2011). Functional genetic variants that increase synaptic serotonin and 5-HT3 receptor sensitivity predict alcohol and drug dependence. Molecular Psychiatry, 16, 11391146.CrossRefGoogle ScholarPubMed
Ernouf, D., Compagnon, P., Lothion, P., Narcisse, G., Benard, J. Y., & Daoust, M. (1993). Platelets 3H 5-HT uptake in descendants from alcoholic patients: A potential risk factor for alcohol dependence? Life Sciences, 52, 989995.CrossRefGoogle ScholarPubMed
Evans, D. M., Brion, M. J. A., Paternoster, L., Kemp, J. P., McMahon, G., Munafò, M., … TAG Consortium. (2013). Mining the human phenome using allelic scores that index biological intermediates. PLOS Genetics, 9, e1003919.CrossRefGoogle ScholarPubMed
Farren, C. K., Ziedonis, D., Clare, A. W., Hammeedi, F. A., & Dinan, T. G. (1995). D-fenfluramine-induced prolactin responses in postwithdrawal alcoholics and controls. Alcoholism: Clinical and Experimental Research, 19, 15781582.CrossRefGoogle ScholarPubMed
Feinn, R., Nellissery, M., & Kranzler, H. R. (2005). Meta-analysis of the association of a functional serotonin transporter promoter polymorphism with alcohol dependence. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 133, 7984.CrossRefGoogle Scholar
Fillmore, K. M., Golding, J. M., Leino, E. V., Motoyoshi, M., Shoemaker, C., Terry, H., … Ferrer, H. P. (1997). Patterns and trends in women's and men's drinking. In Wilsnack, R. W. & Wilsnack, S. V. (Eds.), Gender and alcohol: Individual and social perspectives (pp. 2148). Piscataway, NJ: Rutgers Center on Alcohol Studies.Google Scholar
Finn, P. R., Young, S. N., Pihl, R. O., & Ervin, F. R. (1998). The effects of acute plasma tryptophan manipulation on hostile mood: The influence of trait hostility. Aggressive Behavior, 24, 173185.3.0.CO;2-M>CrossRefGoogle Scholar
Fisher, S. L., Bucholz, K. K., Reich, W., Fox, L., Kuperman, S., Kramer, J., … Bierut, L. J. (2006). Teenagers are right—Parents do not know much: An analysis of adolescent–parent agreement on reports of adolescent substance use, abuse, and dependence. Alcoholism: Clinical and Experimental Research, 30, 16991710.CrossRefGoogle Scholar
Flory, J. D., Mann, J. J., Manuck, S. B., & Muldoon, M. F. (1998). Recovery from major depression is not associated with normalization of serotonergic function. Biological Psychiatry, 43, 320326.CrossRefGoogle Scholar
Füs-Aime, M. L., Eckardt, M. J., George, D. T., Brown, G. L., Mefford, I., & Linnoila, M. (1996). Early-onset alcoholics have lower cerebrospinal fluid 5-hydroxyindoleacetic acid levels than late-onset alcoholics. Archives of General Psychiatry, 53, 211216.CrossRefGoogle Scholar
Gongwer, M. A., Murphy, J. M., McBride, W. J., Lumeng, L., & Li, T. K. (1989). Regional brain contents of serotonin, dopamine and their metabolites in the selectively bred high- and low-alcohol drinking lines of rats. Alcohol, 6, 317320.CrossRefGoogle ScholarPubMed
Grills, A. E., & Ollendick, T. H. (2002). Issues in parent-child agreement: The case of structured diagnostic interviews. Clinical Child and Family Psychology Review, 5, 5783.CrossRefGoogle ScholarPubMed
Halperin, J. M., Kalmar, J. H., Schulz, K. P., Marks, D. J., Sharma, V., & Newcorn, J. H. (2006). Elevated childhood serotonergic function protects against adolescent aggression in disruptive boys. Journal of the American Academy of Child & Adolescent Psychiatry, 45, 833840.CrossRefGoogle ScholarPubMed
Hamshere, M. L., Langley, K., Martin, J., Agha, S. S., Stergiakouli, E., Anney, R. J., … Thapar, A. (2013). High loading of polygenic risk for ADHD in children with comorbid aggression. American Journal of Psychiatry, 170, 909916.CrossRefGoogle ScholarPubMed
Hanson, M. D., & Chen, E. (2007). Socioeconomic status and health behaviors in adolescence: A review of the literature. Journal of Behavioral Medicine, 30, 263285.CrossRefGoogle ScholarPubMed
Heinz, A., Mann, K., Weinberger, D. R., & Goldman, D. (2001). Serotonergic dysfunction, negative mood states, and response to alcohol. Alcoholism: Clinical and Experimental Research, 25, 487495.CrossRefGoogle ScholarPubMed
Higley, J. D., King, S. T., Hasert, M. F., Champoux, M., Suomi, S. J., & Linnoila, M. (1996). Stability of interindividual differences in serotonin function and its relationship to severe aggression and competent social behavior in rhesus macaque females. Neuropsychopharmacology, 14, 6776.CrossRefGoogle ScholarPubMed
Higley, J. D., Suomi, S. J., & Linnoila, M. (1992). A longitudinal assessment of CSF monoamine metabolite and plasma cortisol concentrations in young rhesus monkeys. Biological Psychiatry, 32, 127145.CrossRefGoogle ScholarPubMed
Higley, J. D., Thompson, W. W., Champoux, M., Goldman, D., Hasert, M. F., Kraemer, G. W., … Linnoila, M. (1993). Paternal and maternal genetic and environmental contributions to cerebrospinal fluid monoaminemetabolites in rhesus monkeys (Macaca mulatta). Archives of General Psychiatry, 50, 615623.CrossRefGoogle Scholar
Hodgkinson, C. A., Yuan, Q., Xu, K., Shen, P. H., Heinz, E., Lobos, E. A., … Goldman, D. (2008). Addictions biology: Haplotype-based analysis for 130 candidate genes on a single array. Alcohol and Alcoholism, 43, 505515.CrossRefGoogle ScholarPubMed
Huggins, K. N., Mathews, T. A., Locke, J. L., Szeliga, K. T., Friedman, D. P., Bennett, A. J., & Jones, S. R. (2012). Effects of early life stress on drinking and serotonin system activity in rhesus macaques: 5-hydroxyindoleacetic acid in cerebrospinal fluid predicts brain tissue levels. Alcohol, 46, 371376.CrossRefGoogle ScholarPubMed
Hussong, A. M., & Chassin, L. (1994). The stress-negative affect model of adolescent alcohol use: Disaggregating negative affect. Journal of Studies on Alcohol and Drugs, 55, 707718.CrossRefGoogle ScholarPubMed
Hussong, A. M., Curran, P. J., & Chassin, L. (1998). Pathways of risk for accelerated heavy alcohol use among adolescent children of alcoholic parents. Journal of Abnormal Child Psychology, 26, 453466.CrossRefGoogle ScholarPubMed
Keller, M. C. (2014). Gene × Environment interaction studies have not properly controlled for potential confounders: The problem and the (simple) solution. Biological Psychiatry, 75, 1824.CrossRefGoogle Scholar
Keyes, K. M., Li, G., & Hasin, D. S. (2011). Birth cohort effects and gender differences in alcohol epidemiology: A review and synthesis. Alcoholism: Clinical and Experimental Research, 35, 21012112.CrossRefGoogle ScholarPubMed
Klaassen, T., Riedel, W. J., Honig, A., Van Someren, A., Deutz, N. E. P., & Van Praag, H. M. (1999). Mood effects of 24-hour tryptophan depletion in healthy first degree relatives of patients with affective disorders. Biological Psychiatry, 46, 489497.CrossRefGoogle ScholarPubMed
Kochanska, G., Philibert, R. A., & Barry, R. A. (2009). Interplay of genes and early mother–child relationship in the development of self-regulation from toddler to preschool age. Journal of Child Psychology and Psychiatry, 50, 13311338.CrossRefGoogle ScholarPubMed
Krieger, N., Williams, D. R., & Moss, N. E. (1997). Measuring social class in US public health research: Concepts, methodologies, and guidelines. Annual Review of Public Health, 18, 341378.CrossRefGoogle ScholarPubMed
Kruesi, M. J., Rapoport, J. L., Hamburger, S., Hibbs, E., Potter, W. Z., Lenane, M., & Brown, G. L. (1990). Cerebrospinal fluid monoamine metabolites, aggression, and impulsivity in disruptive behavior disorders of children and adolescents. Archives of General Psychiatry, 47, 419426.CrossRefGoogle ScholarPubMed
Lanthier, R. P. (1995). Manual for the Big Five Personality Questionnaire—Revised child version. Unpublished manuscript, George Washington University.Google Scholar
Lee, M. A., & Meltzer, H. Y. (1991). Neuroendocrine responses to serotonergic agents in alcoholics. Biological Psychiatry, 30, 10171030.CrossRefGoogle ScholarPubMed
LeMarquand, D., Pihl, R. O., & Benkelfat, C. (1994a). Serotonin and alcohol intake, abuse, and dependence: Clinical evidence. Biological Psychiatry, 36, 326337.CrossRefGoogle ScholarPubMed
LeMarquand, D., Pihl, R. O., & Benkelfat, C. (1994b). Serotonin and alcohol intake, abuse, and dependence: Findings of animal studies. Biological Psychiatry, 36, 395421.CrossRefGoogle ScholarPubMed
Lesch, K. P. (2005). Alcohol dependence and Gene × Environment interaction in emotion regulation: Is serotonin the link? European Journal of Pharmacology, 526, 113124.CrossRefGoogle ScholarPubMed
Levinson, D. F. (2006). The genetics of depression: A review. Biological Psychiatry, 60, 8492.CrossRefGoogle ScholarPubMed
Litten, R. Z., Ryan, M. L., Falk, D. E., Reilly, M., Fertig, J. B., & Koob, G. F. (2015). Heterogeneity of alcohol use disorder: Understanding mechanisms to advance personalized treatment. Alcoholism: Clinical and Experimental Research, 39, 579584.CrossRefGoogle ScholarPubMed
Loukas, A., & Roalson, L. A. (2006). Family environment, effortful control, and adjustment among European American and Latino early adolescents. Journal of Early Adolescence, 26, 432455.CrossRefGoogle Scholar
Loukas, A., & Robinson, S. (2004). Examining the moderating role of perceived school climate in early adolescent adjustment. Journal of Research on Adolescence, 14, 209233.CrossRefGoogle Scholar
Luykx, J. J., Bakker, S. C., Lentjes, E., Neeleman, M., Strengman, E., Mentink, L., … Ophoff, R. A. (2014). Genome-wide association study of monoamine metabolite levels in human cerebrospinal fluid. Molecular Psychiatry, 19, 228234.CrossRefGoogle ScholarPubMed
MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., & Sheets, V. (2002). A comparison of methods to test mediation and other intervening variable effects. Psychological Methods, 7, 83104.CrossRefGoogle ScholarPubMed
Moriya, J., & Tanno, Y. (2008). Relationships between negative emotionality and attentional control in effortful control. Personality and Individual Differences, 44, 13481355.CrossRefGoogle Scholar
Munafò, M. R., Hayward, G., & Harmer, C. (2006). Selective processing of social threat cues following acute tryptophan depletion. Journal of Psychopharmacology, 20, 3339.CrossRefGoogle ScholarPubMed
Muris, P., Van der Pennen, E., Sigmond, R., & Mayer, B. (2008). Symptoms of anxiety, depression, and aggression in non-clinical children: Relationships with self-report and performance-based measures of attention and effortful control. Child Psychiatry & Human Development, 39, 455467.CrossRefGoogle ScholarPubMed
Murray, K. T., & Kochanska, G. (2002). Effortful control: Factor structure and relation to externalizing and internalizing behaviors. Journal of Abnormal Child Psychology, 30, 503514.CrossRefGoogle ScholarPubMed
Muthén, B. O., & Muthén, L. K. (1998–2012). Mplus user's guide (7th ed.). Los Angeles, CA: Author.Google Scholar
Neale, M. C., & Kendler, K. S. (1995). Models of comorbidity for multifactorial disorders. American Journal of Human Genetics, 57, 935953.Google ScholarPubMed
Neumeister, A., Konstantinidis, A., Stastny, J., Schwarz, M. J., Vitouch, O., Willeit, M., … Kasper, S. (2002). Association between serotonin transporter gene promoter polymorphism (5-HTTLPR) and behavioral responses to tryptophan depletion in healthy women with and without family history of depression. Archives of General Psychiatry, 59, 613620.CrossRefGoogle Scholar
Neumeister, A., Nugent, A. C., Waldeck, T., Geraci, M., Schwarz, M., Bonne, O., … Dreveta, W. C. (2004). Neural and behavioral responses to tryptophan depletion in unmedicated patients with remitted major depressive disorder and controls. Archives of General Psychiatry, 61, 765773.CrossRefGoogle ScholarPubMed
NIDA. (2016). Teen substance use shows promising decline. Retrieved January 9, 2017, from https://www.drugabuse.gov/news-events/news-releases/2016/12/teen-substance-use-shows-promising-decline Google Scholar
Nolen-Hoeksema, S., & Girgus, J. S. (1994). The emergence of gender differences in depression during adolescence. Psychological Bulletin, 115, 424443.CrossRefGoogle ScholarPubMed
Odgers, C. L., Caspi, A., Nagin, D. S., Piquero, A. R., Slutske, W. S., Milne, B. J., … Moffitt, T. E. (2008). Is it important to prevent early exposure to drugs and alcohol among adolescents? Psychological Science, 19, 10371044.CrossRefGoogle ScholarPubMed
Pardini, D., White, H. R., & Stouthamer-Loeber, M. (2007). Early adolescent psychopathology as a predictor of alcohol use disorders by young adulthood. Drug and Alcohol Dependence, 88, S38S49.CrossRefGoogle ScholarPubMed
Plomin, R., DeFries, J. C., Knopik, V. S., & Neiderhiser, J. M. (2016). Top 10 replicated findings from behavioral genetics. Perspectives on Psychological Science, 11, 323.CrossRefGoogle ScholarPubMed
Purcell, S. M., Wray, N. R., Stone, J. L., Visscher, P. M., O'Donovan, M. C., Sullivan, P. F., … Fraser, G. (2009). Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature, 460, 748752.Google ScholarPubMed
Rao, H., Gillihan, S. J., Wang, J., Korczykowski, M., Sankoorikal, G. M. V., Kaercher, K. A., … Farah, M. J. (2007). Genetic variation in serotonin transporter alters resting brain function in healthy individuals. Biological Psychiatry, 62, 600606.CrossRefGoogle ScholarPubMed
Rausch, J. L., Monteiro, M. G., & Schuckit, M. A. (1991). Platelet serotonin uptake in men with family histories of alcoholism. Neuropsychopharmacology, 4, 8386.Google ScholarPubMed
Riggs, N. R., Greenberg, M. T., Kusché, C. A., & Pentz, M. A. (2006). The mediational role of neurocognition in the behavioral outcomes of a social-emotional prevention program in elementary school students: Effects of the PATHS curriculum. Prevention Science, 7, 91102.CrossRefGoogle ScholarPubMed
Robins, L. N., Cottler, L. B., Bucholz, K. K., Compton, W. M., North, C. S., & Rourke, K. M. (2000). Diagnostic Interview Schedule for the DSM-IV (DIS-IV) . St. Louis, MO: Washington University School of Medicine.Google Scholar
Rosenbaum, P. R. (2001). Replicating effects and biases. American Statistician, 55, 223227.CrossRefGoogle Scholar
Rowe, R., Rijsdijk, F. V., Maughan, B., Eley, T. C., & Hosang, G. M. (2008). Heterogeneity in antisocial behaviours and comorbidity with depressed mood: A behavioural genetic approach. Journal of Child Psychology and Psychiatry, 49, 526534.CrossRefGoogle Scholar
Selzer, M. L., Vinokur, A., & van Rooigen, L. (1975). A self-administrated Short Michigan Alcohol Screening Test (SMAST). Journal of Studies on Alcohol, 36, 117126.CrossRefGoogle Scholar
Sher, K. J. (1991). Children of alcoholics: A critical appraisal of theory and research. Chicago: University of Chicago Press.Google Scholar
Shiner, R., & Caspi, A. (2003). Personality differences in childhood and adolescence: Measurement, development, and consequences. Journal of Child Psychology and Psychiatry, 44, 232.CrossRefGoogle ScholarPubMed
Slutske, W. S., Ellingson, J. M., Richmond-Rakerd, L. S., Zhu, G., & Martin, N. G. (2013). Shared genetic vulnerability for disordered gambling and alcohol use disorder in men and women: Evidence from a national community-based Australian Twin Study. Twin Research and Human Genetics, 16, 525534.CrossRefGoogle ScholarPubMed
Smith, K. A., Morris, J. S., Friston, K. J., Cowen, P. J., & Dolan, R. J. (1999). Brain mechanisms associated with depressive relapse and associated cognitive impairment following acute tryptophan depletion. British Journal of Psychiatry, 174, 525529.CrossRefGoogle ScholarPubMed
Stanley, M., Traskman-Bendz, L., & Dorovini-Zis, K. (1985). Correlations between aminergic metabolites simultaneously obtained from human CSF and brain. Life Sciences, 37, 12791286.CrossRefGoogle ScholarPubMed
Subbarao, A., Rhee, S. H., Young, S. E., Ehringer, M. A., Corley, R. P., & Hewitt, J. K. (2008). Common genetic and environmental influences on major depressive disorder and conduct disorder. Journal of Abnormal Child Psychology, 36, 433444.CrossRefGoogle ScholarPubMed
Sullivan, P. F. (2007). Spurious genetic associations. Biological Psychiatry, 61, 11211126.CrossRefGoogle ScholarPubMed
Sung, M., Erkanli, A., Angold, A., & Costello, E. J. (2004). Effects of age at first substance use and psychiatric comorbidity on the development of substance use disorders. Drug and Alcohol Dependence, 75, 287299.CrossRefGoogle ScholarPubMed
Trucco, E. M., Hicks, B. M., Villafuerte, S., Nigg, J. T., Burmeister, M., & Zucker, R. A. (2016). Temperament and externalizing behavior as mediators of genetic risk on adolescent substance use. Journal of Abnormal Psychology, 125, 565575.CrossRefGoogle ScholarPubMed
Tuvblad, C., Grann, M., & Lichtenstein, P. (2006). Heritability for adolescent antisocial behavior differs with socioeconomic status: Gene–environment interaction. Journal of Child Psychology and Psychiatry, 47, 734743.CrossRefGoogle ScholarPubMed
van IJzendoorn, M. H., Belsky, J., & Bakermans-Kranenburg, M. J. (2012). Serotonin transporter genotype 5HTTLPR as a marker of differential susceptibility? A meta-analysis of child and adolescent gene-by-environment studies. Translational Psychiatry, 2(8), e147.CrossRefGoogle ScholarPubMed
Virkkunen, M., & Linnoila, M. (1990). Serotonin in early onset, male alcoholics with violent behaviour. Annals of Medicine, 22, 327331.CrossRefGoogle ScholarPubMed
Wang, F. L., Chassin, L., Eisenberg, N., & Spinrad, T. L. (2015). Effortful control predicts adolescent antisocial-aggressive behaviors and depressive symptoms: Co-occurrence and moderation by impulsivity. Child Development, 86, 18121829.CrossRefGoogle ScholarPubMed
Willem, L., Bijttebier, P., Claes, L., Sools, J., Vandenbussche, I., & Nigg, J. T. (2011). Temperamental characteristics of adolescents with substance abuse and/or dependence: A case–control study. Personality and Individual Differences, 50, 10941098.CrossRefGoogle Scholar
Winkleby, M. A., Jatulis, D. E., Frank, E., & Fortmann, S. P. (1992). Socioeconomic status and health: How education, income, and occupation contribute to risk factors for cardiovascular disease. American Journal of Public Health, 82, 816820.CrossRefGoogle ScholarPubMed
Wong, M. M., & Rowland, S. E. (2013). Self-determination and substance use: Is effortful control a mediator? Alcoholism: Clinical and Experimental Research, 37, 10401047.CrossRefGoogle ScholarPubMed
Wyman, P. A., Cross, W., Brown, C. H., Yu, Q., Tu, X., & Eberly, S. (2010). Intervention to strengthen emotional self-regulation in children with emerging mental health problems: Proximal impact on school behavior. Journal of Abnormal Child Psychology, 38, 707720.CrossRefGoogle ScholarPubMed
Young-Wolff, K. C., Enoch, M. A., & Prescott, C. A. (2011). The influence of gene–environment interactions on alcohol consumption and alcohol use disorders: A comprehensive review. Clinical Psychology Review, 31, 800816.CrossRefGoogle ScholarPubMed
Zlojutro, M., Manz, N., Rangaswamy, M., Xuei, X., Flury-Wetherill, L., Koller, D., … Almasy, L. (2011). Genome-wide association study of theta band event-related oscillations identifies serotonin receptor gene HTR7 influencing risk of alcohol dependence. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 156, 4458.CrossRefGoogle Scholar
Supplementary material: File

Wang supplementary material

Wang supplementary material 1

Download Wang supplementary material(File)
File 836 KB